Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Transketolase-like 1 (TKTL1) plays an important role in pentose phosphate pathway (PPP) branch, the main pathway generating nicotinamide adenine dinucleotide phosphate (NADPH) and nucleotides for DNA synthesis. TKTL1 is closely related to DNA damage and has a close relationship with incidence and progression of cancers. Cisplatin is the main chemotherapeutic drug by inducing DNA damage. Whether TKTL1 knockdown additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells, however, remains largely undefined.

Methods: Lipofectamine 2000 was used to transfect si-TKTL1s with different sequences into the CNE2 and HONE1 cells. The mRNA and protein levels of TKTL1 were determined by qRT-PCR and western blot, respectively. MTT assay and flow cytometry were used to access the viability and apoptosis of CNE2 and HONE1 cells. The NADPH and ribose-5-phosphate levels in both CNE2 and HONE1 cells were determined by NADPH examination kit and HPCE analysis, respectively. The effect of TKTL1 knockdown and NADPH/ribose-5-phosphate supplement on DNA damage was assessed by using Comet assay.

Results: TKTL1 knockdown significantly decreased TKTL1 level in CNE2 and HONE1 cells. A significant decrease in cell viability and an obvious increase in cell apoptosis rate were found in si-TKTL1+cisplatin group compared with si-TKTL1 group or si-control+cisplatin group. The levels of NADPH and ribose-5-phosphate in CNE1 and HONE1 cells were dramatically decreased in si-TKTL1 group compared with si-control group. TKTL1 knockdown additively complemented cisplatin-induced cytotoxicity, which was partly reversed by the supplements of NADPH and ribose-5-phosphate, including the increased survival rate, decreased apoptosis and DNA damage.

Conclusions: Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in the nasopharyngeal carcinoma cells by inhibiting the levels of NADPH and ribose-5-phosphate, indicating that TKTL1 may be a promising target to improve the therapeutic effect combining with cisplatin for the patients with nasopharyngeal carcinoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2016.11.078DOI Listing

Publication Analysis

Top Keywords

nadph ribose-5-phosphate
20
hone1 cells
20
cisplatin-induced cytotoxicity
16
nasopharyngeal carcinoma
16
tktl1 knockdown
16
cne2 hone1
16
additively complements
12
complements cisplatin-induced
12
cytotoxicity nasopharyngeal
12
carcinoma cells
12

Similar Publications

MYC promotes group 3 medulloblastoma cell proliferation and alleviates ROS-induced cell death by upregulating transketolase.

Acta Neuropathol Commun

June 2025

Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China.

Medulloblastoma is a common embryonic malignant tumor in children. Patients with Group 3 medulloblastoma exhibit the poorest prognosis among all subgroups, and approximately 20% of these patients carry an amplification of MYC. Metabolic reprogramming, a hallmark of cancer, includes the pentose phosphate pathway (PPP) as a branch of glucose metabolism, providing cells with ribose-5-phosphate (R5P) and nicotinamide adenine dinucleotide phosphate (NADPH).

View Article and Find Full Text PDF

Malaria is a protozoan disease caused by the Plasmodium species. It is one of the top reasons for mortality globally, with 241 million cases and more than 6,27,000 deaths reported in 2020. The Pentose Phosphate Pathway (PPP) in Plasmodium falciparum plays a vital role in cellular metabolism, serving two main functions: generating ribose-5-phosphate for nucleotide biosynthesis and producing NADPH for reductive biosynthesis and oxidative stress regulation.

View Article and Find Full Text PDF

Cell type-specific regulation of the pentose phosphate pathway during development and metabolic stress-driven autoimmune diseases: Relevance for inflammatory liver, renal, endocrine, cardiovascular and neurobehavioral comorbidities, carcinogenesis, and aging.

Autoimmun Rev

April 2025

Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, and Pathology, State University of New York Upstate Medical University, Norton College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA. Electronic address:

The pathogenesis of autoimmunity is incompletely understood which limits the development of effective therapies. New compelling evidence indicates that the pentose phosphate pathway (PPP) profoundly regulate lineage development in the immune system that are influenced by genetic and environmental factors during metabolic stress underlying the development of autoimmunity. The PPP provides two unique metabolites, ribose 5-phosphate for nucleotide biosynthesis in support of cell proliferation and NADPH for protection against oxidative stress.

View Article and Find Full Text PDF

The pentose phosphate pathway (PPP), traditionally recognized for its role in generating nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate (R5P), has emerged as a critical metabolic hub with involvements in various gastrointestinal (GI) cancers. The PPP plays crucial roles in the initiation, development, and tumor microenvironment (TME) of GI cancers by modulating redox homeostasis and providing precursors for nucleotide biosynthesis. Targeting PPP enzymes and their regulatory axis has been a potential strategy in anti-GI cancer therapies.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF