Emergence of a Wave of Wnt Signaling that Regulates Lung Alveologenesis by Controlling Epithelial Self-Renewal and Differentiation.

Cell Rep

Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute fo

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alveologenesis is the culmination of lung development and involves the correct temporal and spatial signals to generate the delicate gas exchange interface required for respiration. Using a Wnt-signaling reporter system, we demonstrate the emergence of a Wnt-responsive alveolar epithelial cell sublineage, which arises during alveologenesis, called the axin2+ alveolar type 2 cell, or AT2. The number of AT2 cells increases substantially during late lung development, correlating with a wave of Wnt signaling during alveologenesis. Transcriptome analysis, in vivo clonal analysis, and ex vivo lung organoid assays reveal that AT2s promote enhanced AT2 cell growth during generation of the alveolus. Activating Wnt signaling results in the expansion of AT2s, whereas inhibition of Wnt signaling inhibits AT2 cell development and shunts alveolar epithelial development toward the alveolar type 1 cell lineage. These findings reveal a wave of Wnt-dependent AT2 expansion required for lung alveologenesis and maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214982PMC
http://dx.doi.org/10.1016/j.celrep.2016.11.001DOI Listing

Publication Analysis

Top Keywords

wnt signaling
16
wave wnt
8
lung alveologenesis
8
lung development
8
alveolar epithelial
8
alveolar type
8
type cell
8
at2 cell
8
lung
5
alveologenesis
5

Similar Publications

Lung cancer remains one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for more effective and targeted therapeutic strategies. Traditional Chinese Medicine (TCM), known for its favorable safety profile and broad pharmacological effects, offers promising candidates for cancer treatment. Salvianolic acid F (SAF), a key bioactive compound derived from , has demonstrated antitumor potential, but its role and underlying mechanisms in lung cancer remain inadequately characterized.

View Article and Find Full Text PDF

Cardiovascular-Kidney-Metabolic (CKM) syndrome, a newly defined systemic disorder, is characterized by the pathological interplay among diabetes, chronic kidney disease (CKD), and cardiovascular disease (CVD). Recent studies have identified chronic inflammation not only as a central mediator in the pathological progression of CKM syndrome but also as a pivotal molecular hub that drives coordinated damage across multiple organ systems. Mechanistic investigations have revealed that aberrant activation of signaling pathways such as NF-κB, Wnt, PI3K-AKT, JAK-STAT, and PPAR constitutes a complex inflammatory regulatory network.

View Article and Find Full Text PDF

Objectives: To investigate the antitumor effects of aucubin (AC) in non-small cell lung cancer (NSCLC) and uncover its plausible mechanism against lung cancer stem-like cells (LCSCs).

Methods: In vitro experiments included MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a reagent commonly used for cell viability assay) and colony formation assays to assess anti-proliferative effects on A549 and NCI-H1975 lung cancer cell lines, wound healing and Transwell invasion assays to evaluate inhibition of cell migration and invasion, tumorsphere-formation experiments to detect changes in NSCLC cell stemness, as well as Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses to measure the expression of LCSC markers (CD44, CD133, Oct4, and Nanog). In vivo experiments were conducted to observe the impact of AC on NSCLC metastasis and mouse survival rates.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a prevalent malignant neoplasm of the digestive system, including 80% of primary liver malignancies. The Wnt/β-catenin signaling pathway plays a key role in immune response and tumer resistance. A growing number of studies have shown that the Wnt/β-catenin signaling pathway is involved in the pathogenesis of HCC.

View Article and Find Full Text PDF