Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5175409PMC
http://dx.doi.org/10.1016/j.celrep.2016.09.069DOI Listing

Publication Analysis

Top Keywords

atp-citrate lyase
8
acly cells
8
histone acetylation
8
acetate
5
lyase controls
4
controls glucose-to-acetate
4
glucose-to-acetate metabolic
4
metabolic switch
4
switch mechanisms
4
mechanisms metabolic
4

Similar Publications

Cardiovascular disease remains a major global health challenge, with dyslipidaemia being a key modifiable risk factor. While low density lipoprotein cholesterol (LDL-C) is the primary target for lipid-lowering therapies, recent evidence highlights the importance of triglycerides, apolipoprotein B (apoB), and lipoprotein(a) [Lp(a)] for residual cardiovascular risk. Current lipid-lowering therapies target key enzymes and proteins involved in cholesterol and lipid metabolism.

View Article and Find Full Text PDF

[Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro].

Zhongguo Zhong Yao Za Zhi

July 2025

Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004, China.

This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay.

View Article and Find Full Text PDF

Breast cancer therapy confronts dual challenges of metabolic plasticity-driven drug resistance and immunosuppression. To address this, we developed DCP-TPP, a therapeutic nanoplatform that integrates dysregulation of copper homeostasis and lipid metabolism for precise breast cancer therapy. Leveraging the overexpression of cluster of differentiation 36 (CD36) in breast cancer cells, DCP-TPP employs fatty acid camouflage (PCM) to deliver disulfiram (DSF) and photothermal CuBiS to cancer cells and features triphenylphosphonium (TPP) modification for targeted mitochondrial drug delivery.

View Article and Find Full Text PDF

Organ functions generally decline with age, but the ovary is a prototypical organ that undergoes functional loss over time. Autophagy plays a crucial role in maintaining organ homeostasis, and age-related upregulation of the autophagy inhibitor protein, Rubicon, has been linked to cellular and tissue dysfunction. This review describes how granulosa cell autophagy supports follicular growth and oocyte selection and maturation by regulating cellular energy metabolism and protein quality control.

View Article and Find Full Text PDF

Treatment resistance prevents patients with preoperative chemoradiotherapy or targeted radiolabeled immunotherapy from achieving a good result, which remains a major challenge in the prostate cancer (PCa) area. A novel integrative framework combining a machine learning workflow with proteogenomic profiling was used to identify predictive ultrasound biomarkers and classify patient response to radiolabeled immunotherapy in high-risk PCa patients who are treatment resistant. The deep stacked autoencoder (DSAE) model, combined with Extreme Gradient Boosting, was designed for feature refinement and classification.

View Article and Find Full Text PDF