98%
921
2 minutes
20
The mating system transition in polyploid Brassica napus (AACC) from out-crossing to selfing is a typical trait to differentiate it from their diploid progenitors. Elucidating the mechanism of mating system transition has profound consequences for understanding the speciation and evolution in B. napus. Functional complementation experiment has shown that the insertion of 3.6 kb into the promoter of self-incompatibility male determining gene, BnSP11-1 leads to its loss of function in B. napus. The inserted fragment was found to be a non-autonomous Helitron transposon. Further analysis showed that the inserted 3.6 kb non-autonomous Helitron transposon was widely distributed in B. napus accessions which contain the S haplotype BnS-1. Through promoter deletion analysis, an enhancer and a putative cis-regulatory element (TTCTA) that were required for spatio-temporal specific expression of BnSP11-1 were identified, and both might be disrupted by the insertion of Helitron transposon. We suggested that the insertion of Helitron transposons in the promoter of BnSP11-1 gene had altered the mating system and might facilitated the speciation of B. napus. Our findings have profound consequences for understanding the self-compatibility in B. napus as well as for the trait variations during evolutionary process of plant polyploidization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030654 | PMC |
http://dx.doi.org/10.1038/srep33785 | DOI Listing |
Insect Sci
September 2025
Department of Entomology & Nematology, University of Florida, Gainesville, Florida.
The sterile insect technique (SIT) is a highly effective biologically-based method for the suppression of many insect pest populations. SIT efficacy could be improved by methods of male sterilization that avoid the use of irradiation that can result in diminished fitness and mating competitiveness. Alternative sterilization methods include conditional disruption of genes for male fertility, or using their sperm-specific promoters to drive the expression of genes for lethal effectors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Physics and Astronomy, University of California, Los Angeles, CA 90095.
Distortion products are tones produced through nonlinear effects of a system simultaneously detecting two or more frequencies. These combination tones are ubiquitous to vertebrate auditory systems and are generally regarded as byproducts of nonlinear signal amplification. It has previously been shown that several species of infectious-disease-carrying mosquitoes utilize these distortion products for detecting and locating potential mates.
View Article and Find Full Text PDFJ Pestic Sci
August 2025
Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture.
Developing new agrochemicals is essential for sustainable agriculture and global food security. Our group focused on natural products that control plant pathogens, conducting synthetic research across three key areas of interest: antimicrobial compounds, phytoalexins, and microbial signaling molecules. We established new methods for producing chiral allylic alcohols as useful synthetic intermediates for natural product synthesis the enantioselective synthesis of antimicrobial agents such as peniciaculins.
View Article and Find Full Text PDFAm J Bot
September 2025
Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, 22904, Virginia, USA.
Premise: Transitions from outcrossing to selfing often drive the evolution of floral traits in a predictable way. However, these expectations are not as straightforward for mixed-mating systems. In this study, we examine variation in pollen-collecting hairs, a floral structure involved in secondary pollen presentation within Campanulaceae.
View Article and Find Full Text PDFPLoS Biol
September 2025
HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
Neuropeptides play crucial roles in regulating context-dependent behaviors, but the underlying mechanisms remain elusive. We investigate the role of the neuropeptide SIFa and its receptor SIFaR in regulating two distinct mating duration behaviors in male Drosophila: Longer-Mating-Duration (LMD) and Shorter-Mating-Duration (SMD). We found that SIFaR expression in specific neurons is required for both LMD and SMD behaviors.
View Article and Find Full Text PDF