98%
921
2 minutes
20
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-genet-120215-035227 | DOI Listing |
Sci Adv
August 2025
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, Switzerland.
Coccolithophores, including bloom-forming species, (formerly ), contribute ~1 to 10% of phytoplankton biomass and are critical for oceanic biogeochemical cycles. is a model system for investigating algal-bacterial-viral interactions and responses to environmental changes and follows a biphasic lifecycle with motile haploid and nonmotile diploid phases. Here, we report a third, "amoeboid" phase: Light and electron microscopy revealed haploid cells rapidly transitioning to an elongated amoeboid cell with reduced motility.
View Article and Find Full Text PDFBiol Open
August 2025
Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Transgene expression in eHAP cells, a haploid cell line commonly used to generate gene knockouts, is difficult due to its low transfection efficiency and poor expression of integrated transgenes. To enable simple and reliable transgene expression, we engineered insulated integrating plasmids that sustain high levels of transgene expression in eHAP cells, and that can be used in other cell lines. These vectors are compatible with FLP-FRT and piggyBac integration, they flank a gene-of interest bilaterally with tandem cHS4 core insulators, and co-express nuclear-localized blue fluorescent protein for identification of high expressing cells.
View Article and Find Full Text PDFAffordable genotyping methods are essential in genomics. Commonly used genotyping methods primarily support single nucleotide variants and short indels but neglect structural variants. Additionally, accuracy of read alignments to a reference genome is unreliable in highly polymorphic and repetitive regions, further impacting genotyping performance.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Computational Biology, Cornell University, Ithaca, NY, USA.
Evolutionary simulations of multiple chromosomes, even up to the scale of full-genome simulations, are becoming increasingly important in population genetics and evolutionary ecology. Unfortunately, the popular simulation framework SLiM has always been intrinsically limited to simulations of a single diploid chromosome. Modeling multiple chromosomes of different types, such as sex chromosomes, has always been cumbersome even with scripting, presenting a substantial barrier to the development of full-genome simulations.
View Article and Find Full Text PDFJ Exp Bot
August 2025
Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
Mosses from the genus Sphagnum have experienced 350 million years of separate evolution, resulting in distinctive features, such as unlimited apical growth potential, unknown from other mosses. They are ecosystem engineers and the main components of peatlands. Although peatlands cover only a small part of Earth's landmass, they store more carbon than all living matter combined.
View Article and Find Full Text PDF