Publications by authors named "Ghanshyam Chandra"

Affordable genotyping methods are essential in genomics. Commonly used genotyping methods primarily support single nucleotide variants and short indels but neglect structural variants. Additionally, accuracy of read alignments to a reference genome is unreliable in highly polymorphic and repetitive regions, further impacting genotyping performance.

View Article and Find Full Text PDF

Affordable genotyping methods are essential in genomics. Commonly used genotyping methods primarily support single nucleotide variants and short indels but neglect structural variants. Additionally, accuracy of read alignments to a reference genome is unreliable in highly polymorphic and repetitive regions, further impacting genotyping performance.

View Article and Find Full Text PDF

Modern pangenome graphs are built using haplotype-resolved genome assemblies. When mapping reads to a pangenome graph, prioritizing alignments that are consistent with the known haplotypes improves genotyping accuracy. However, the existing rigorous formulations for colinear chaining and alignment problems do not consider the haplotype paths in a pangenome graph.

View Article and Find Full Text PDF

Pangenome reference graphs are useful in genomics because they compactly represent the genetic diversity within a species, a capability that linear references lack. However, efficiently aligning sequences to these graphs with complex topology and cycles can be challenging. The seed-chain-extend based alignment algorithms use co-linear chaining as a standard technique to identify a good cluster of exact seed matches that can be combined to form an alignment.

View Article and Find Full Text PDF