Mosses from the genus Sphagnum have experienced 350 million years of separate evolution, resulting in distinctive features, such as unlimited apical growth potential, unknown from other mosses. They are ecosystem engineers and the main components of peatlands. Although peatlands cover only a small part of Earth's landmass, they store more carbon than all living matter combined.
View Article and Find Full Text PDFWe report the successful moss-produced recombinant spider silk key protein component containing both the N- and the C-terminal domain. Spider dragline silk stands out as a remarkable biomaterial, representing one of nature's toughest fibres. Its strength rivals that of many synthetic fibres used commercially, rendering it applicable across various industrial and medical domains.
View Article and Find Full Text PDFAcylamino acid-releasing enzyme (AARE) is an evolutionary deeply conserved bifunctional serine protease. In its exopeptidase mode, AARE cleaves N-terminally acetylated or otherwise blocked amino acids from the N-terminus of peptides and probably even intact proteins. In its endopeptidase mode, AARE cleaves oxidised proteins at internal positions.
View Article and Find Full Text PDFMosses, the largest lineage of seed-free plants, have smaller and less variable genome sizes than flowering plants. Nevertheless, whether this difference results from divergent genome dynamics is poorly known. Here, we use newly generated chromosome-scale genome assemblies for Funaria hygrometrica and comparative analysis with other moss and seed plant genomes to investigate moss genome dynamics.
View Article and Find Full Text PDFBacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.
View Article and Find Full Text PDFAnalysis of the N-terminome of Physcomitrella reveals N-terminal monomethylation of nuclear-encoded, mitochondria-localized proteins. Post- or co-translational N-terminal modifications of proteins influence their half-life as well as mediating protein sorting to organelles via cleavable N-terminal sequences that are recognized by the respective translocation machinery. Here, we provide an overview on the current modification state of the N-termini of over 4500 proteins from the model moss Physcomitrella (Physcomitrium patens) using a compilation of 24 N-terminomics datasets.
View Article and Find Full Text PDFThe phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently -glycosylated. While both modifications are important, for cell wall stability, they are undesired in plant-made pharmaceuticals.
View Article and Find Full Text PDFCharacterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins.
View Article and Find Full Text PDFOften overlooked, these small but otherwise brilliant plants began covering Earth's land masses more than 450 million years ago. They saw the dinosaurs come and go, and they saw us humans coming. Mosses, liverworts and hornworts comprise the bryophytes, the second largest monophyletic clade of land plants (embryophytes), after the vascular plants (tracheophytes).
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2023
Oxidative burst, the rapid production of high levels of reactive oxygen species in response to external stimuli, is an early defense reaction against pathogens. The fungal elicitor chitosan causes an oxidative burst in the moss (formerly ), mainly due to the peroxidase enzyme Prx34. To better understand the chitosan responses in , we conducted a screen of part of a mutant collection to isolate plants with less peroxidase activity than wild-type (WT) plants after chitosan treatment.
View Article and Find Full Text PDFPlant Cell Physiol
August 2023
Electrical and calcium signals in plants are some of the basic carriers of information that are transmitted over a long distance. Together with reactive oxygen species (ROS) waves, electrical and calcium signals can participate in cell-to-cell signaling, conveying information about different stimuli, e.g.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2023
Human complement is the first line of defence against invading pathogens and is involved in tissue homeostasis. Complement-targeted therapies to treat several diseases caused by a dysregulated complement are highly desirable. Despite huge efforts invested in their development, only very few are currently available, and a deeper understanding of the numerous interactions and complement regulation mechanisms is indispensable.
View Article and Find Full Text PDFThe auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development.
View Article and Find Full Text PDFReactive oxygen species (ROS) are constant by-products of aerobic life. In excess, ROS lead to cytotoxic protein aggregates, which are a hallmark of ageing in animals and linked to age-related pathologies in humans. Acylamino acid-releasing enzymes (AARE) are bifunctional serine proteases, acting on oxidized proteins.
View Article and Find Full Text PDFB lymphocytes recognize bacterial or viral antigens via different classes of the B cell antigen receptor (BCR). Protrusive structures termed microvilli cover lymphocyte surfaces, and are thought to perform sensory functions in screening antigen-bearing surfaces. Here, we have used lattice light-sheet microscopy in combination with tailored custom-built 4D image analysis to study the cell-surface topography of B cells of the Ramos Burkitt's Lymphoma line and the spatiotemporal organization of the IgM-BCR.
View Article and Find Full Text PDFInterview with Ralf Reski, who works on fundamental and applied issues using moss plants.
View Article and Find Full Text PDFCultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products.
View Article and Find Full Text PDFAsymmetric cell division (ACD) underlies the development of multicellular organisms. In animal ACD, the cell division site is determined by active spindle-positioning mechanisms. In contrast, it is considered that the division site in plants is determined prior to mitosis by the microtubule-actin belt known as the preprophase band (PPB) and that the localization of the mitotic spindle is typically static and does not govern the division plane.
View Article and Find Full Text PDFSpider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The -glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity.
View Article and Find Full Text PDFThe moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors.
View Article and Find Full Text PDFThe complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g.
View Article and Find Full Text PDFIn the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants.
View Article and Find Full Text PDF