Publications by authors named "Eva L Decker"

Mosses from the genus Sphagnum have experienced 350 million years of separate evolution, resulting in distinctive features, such as unlimited apical growth potential, unknown from other mosses. They are ecosystem engineers and the main components of peatlands. Although peatlands cover only a small part of Earth's landmass, they store more carbon than all living matter combined.

View Article and Find Full Text PDF

Complement activation is a relevant driver in the pathomechanisms of vasculitis. The involved proteins in the interaction between endothelia, complement, and platelets in these conditions are only partially understood. Thrombospondin-1 (TSP-1), found in platelet α-granules and released from activated endothelial cells, interacts with factor H (FH) and vWF.

View Article and Find Full Text PDF

We report the successful moss-produced recombinant spider silk key protein component containing both the N- and the C-terminal domain. Spider dragline silk stands out as a remarkable biomaterial, representing one of nature's toughest fibres. Its strength rivals that of many synthetic fibres used commercially, rendering it applicable across various industrial and medical domains.

View Article and Find Full Text PDF

Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.

View Article and Find Full Text PDF

Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently -glycosylated. While both modifications are important, for cell wall stability, they are undesired in plant-made pharmaceuticals.

View Article and Find Full Text PDF

Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Extreme environments are highly vulnerable to climate change, risking specialized species like the moss Takakia lepidozioides, which could face high extinction rates.
  • Records show that from 2010 to 2021, temperatures above 4,000 m have risen steeply, impacting the survival of Takakia lepidozioides, which has evolved unique adaptations for extreme conditions.
  • Despite having survived for nearly 400 million years and displaying significant genetic adaptations, Takakia is now threatened by rising UV-B radiation and drastic temperature changes linked to its uplift over the last 65 million years.
View Article and Find Full Text PDF

Oxidative burst, the rapid production of high levels of reactive oxygen species in response to external stimuli, is an early defense reaction against pathogens. The fungal elicitor chitosan causes an oxidative burst in the moss (formerly ), mainly due to the peroxidase enzyme Prx34. To better understand the chitosan responses in , we conducted a screen of part of a mutant collection to isolate plants with less peroxidase activity than wild-type (WT) plants after chitosan treatment.

View Article and Find Full Text PDF

Human complement is the first line of defence against invading pathogens and is involved in tissue homeostasis. Complement-targeted therapies to treat several diseases caused by a dysregulated complement are highly desirable. Despite huge efforts invested in their development, only very few are currently available, and a deeper understanding of the numerous interactions and complement regulation mechanisms is indispensable.

View Article and Find Full Text PDF

The auxin efflux PIN-FORMED (PIN) proteins are conserved in all land plants and important players in plant development. In the moss Physcomitrella (Physcomitrium patens), three canonical PINs (PpPINA-C) are expressed in the leafy shoot (gametophore). PpPINA and PpPINB show functional activity in vegetative growth and sporophyte development.

View Article and Find Full Text PDF

As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The -glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity.

View Article and Find Full Text PDF

The moss Physcomitrella is an interesting production host for recombinant biopharmaceuticals. Here we produced MFHR1, a synthetic complement regulator which has been proposed for the treatment of diseases associated to the complement system as part of human innate immunity. We studied the impact of different operation modes for the production process in 5 L stirred-tank photobioreactors.

View Article and Find Full Text PDF

The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g.

View Article and Find Full Text PDF

In the animal kingdom, a stunning variety of N-glycan structures have emerged with phylogenetic specificities of various kinds. In the plant kingdom, however, N-glycosylation appears to be strictly conservative and uniform. From mosses to all kinds of gymno- and angiosperms, land plants mainly express structures with the common pentasaccharide core substituted with xylose, core α1,3-fucose, maybe terminal GlcNAc residues and Lewis A determinants.

View Article and Find Full Text PDF

In Physcomitrella, whole-genome duplications affected the expression of about 3.7% of the protein-encoding genes, some of them relevant for DNA repair, resulting in a massively reduced gene-targeting frequency. Qualitative changes in gene expression after an autopolyploidization event, a pure duplication of the whole genome (WGD), might be relevant for a different regulation of molecular mechanisms between angiosperms growing in a life cycle with a dominant diploid sporophytic stage and the haploid-dominant mosses.

View Article and Find Full Text PDF

Production of biopharmaceuticals relies on the expression of mammalian cDNAs in host organisms. Here we show that the expression of a human cDNA in the moss Physcomitrium patens generates the expected full-length and four additional transcripts due to unexpected splicing. This mRNA splicing results in non-functional protein isoforms, cellular misallocation of the proteins and low product yields.

View Article and Find Full Text PDF

Recombinantly produced proteins are indispensable tools for medical applications. Since the majority of them are glycoproteins, their -glycosylation profiles are major determinants for their activity, structural properties and safety. For therapeutical applications, a glycosylation pattern adapted to product and treatment requirements is advantageous.

View Article and Find Full Text PDF

Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S.

View Article and Find Full Text PDF
Mosses in biotechnology.

Curr Opin Biotechnol

February 2020

Biotechnological exploitation of mosses has several aspects, for example, the use of moss extracts or the whole plant for diverse industrial applications as well as their employment as production platforms for valuable metabolites or pharmaceutical proteins, especially using the genetically and developmentally best-characterised model moss Physcomitrella patens. Whole moss plants, in particular peat mosses (Sphagnum spec.), are useful for environmental approaches, biomonitoring of environmental pollution and CO-neutral 'farming' on rewetted bogs to combat climate change.

View Article and Find Full Text PDF

The human complement system is an important part of the immune system responsible for lysis and elimination of invading microorganisms and apoptotic body cells. Improper activation of the system due to deficiency, mutations, or autoantibodies of complement regulators, mainly factor H (FH) and FH-related proteins (FHRs), causes severe kidney and eye diseases. However, there is no recombinant FH therapeutic available on the market.

View Article and Find Full Text PDF

The use of plants as production platforms for pharmaceutical proteins has been on the rise for the past two decades. The first marketed plant-made pharmaceutical, taliglucerase alfa against Gaucher's disease produced in carrot cells by Pfizer/Protalix Biotherapeutics, was approved by the US Food and Drug Administration (FDA) in 2012. The advantages of plant systems are low cost and highly scalable biomass production compared to the fermentation systems, safety compared with other expression systems, as plant-based systems do not produce endotoxins, and the ability to perform complex eukaryotic post-translational modifications, e.

View Article and Find Full Text PDF

Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified.

View Article and Find Full Text PDF

RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on and , the model species predominantly used for studies on DNA repair and gene targeting.

View Article and Find Full Text PDF

The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1.

View Article and Find Full Text PDF

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle.

View Article and Find Full Text PDF