Grasses form morphologically derived, four-celled stomata, where two dumbbell-shaped guard cells (GCs) are flanked by two lateral subsidiary cells (SCs). This innovative form enables rapid opening and closing kinetics and efficient plant-atmosphere gas exchange. The mobile bHLH transcription factor MUTE is required for SC formation in grasses.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Hydroxylation of prolines to 4-trans-hydroxyproline (Hyp) is mediated by prolyl-4 hydroxylases (P4Hs). In plants, Hyps occur in Hydroxyproline-rich glycoproteins (HRGPs), and are frequently -glycosylated. While both modifications are important, for cell wall stability, they are undesired in plant-made pharmaceuticals.
View Article and Find Full Text PDFGrass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2021
Stomata constantly open and close to optimize gas exchange. While the genetic programme guiding early development is well described, the formation of functional guard cells remains enigmatic. This review highlights recent findings on the developmental and morphogenetic processes shaping this essential and morphologically diverse cell type in Arabidopsis and grasses.
View Article and Find Full Text PDF