98%
921
2 minutes
20
Cyclosporine A (CsA) is known as a neuroprotective agent against cerebral ischemia/reperfusion (I/R) in animal models. However, the significant therapeutic effects of CsA have been observed in high systemic doses or manipulating the blood-brain barrier, resulting in systemic side effects and toxicity. As the liposome nanocarriers have been developed for efficient delivery of peptide and proteins, liposomal CsA (Lipo-CsA) could improve cerebral (I/R) injuries. In this study, the liposomal CsA formulation (CsA at dose of 2.5 mg/kg) was prepared to assess the brain injury outcomes in 90 min middle cerebral artery occlusion (MCAO) stroke model followed by 48 h reperfusion in treating rats. Five minutes after induction of cerebral ischemia in rats, intravenous (iv) administration of Lipo-CsA significantly (P < 0.001) recovered the infarct size, the brain edema, and the neurological activities compared to corresponding control groups following 48 h I/R. In addition, after 48 h cerebral I/R, Lipo-CsA potentially (P < 0.001) inhibited the inflammation responses including MPO activity and tumor necrosis factor-alpha level in comparison to other groups. In conclusion, the results indicate that the low dose of CsA in liposomal formulation is more effective compared to higher dose of free form of CsA in treatment of ischemic brain in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/fcp.12244 | DOI Listing |
CNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Neuroscience Research Center, Suleyman Demirel University, Isparta, Türkiye.
Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
This review article describes recent research advances in the relationship between spinal cord injury (SCI) and the gut microbiota and each other's inflammatory response. SCI is a serious neurological disease that directly damages physiological function. Recent studies have shown that SCI significantly affected the composition and function of the gut microbiota, and even caused intestinal inflammation.
View Article and Find Full Text PDFNeurotherapeutics
September 2025
Department of Neurology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China; Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking Universit
Extensive research has confirmed that omega-3 fatty acids provide cardiovascular protection primarily by activating the G protein-coupled receptor 120 (GPR120) signaling pathway. However, natural activators of this receptor often lack sufficient strength and precision. TUG-891, a recently synthesized selective GPR120 activator, has displayed significant therapeutic potential in multiple disease.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Obstetrics, The Second Hospital of Shandong University, Jinan, 250033, PR China. Electronic address:
Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.
View Article and Find Full Text PDF