98%
921
2 minutes
20
Glioma stem-like cells (GSC) with tumor-initiating activity orchestrate the cellular hierarchy in glioblastoma and engender therapeutic resistance. Recent work has divided GSC into two subtypes with a mesenchymal (MES) GSC population as the more malignant subtype. In this study, we identify the FOXD1-ALDH1A3 signaling axis as a determinant of the MES GSC phenotype. The transcription factor FOXD1 is expressed predominantly in patient-derived cultures enriched with MES, but not with the proneural GSC subtype. shRNA-mediated attenuation of FOXD1 in MES GSC ablates their clonogenicity in vitro and in vivo Mechanistically, FOXD1 regulates the transcriptional activity of ALDH1A3, an established functional marker for MES GSC. Indeed, the functional roles of FOXD1 and ALDH1A3 are likely evolutionally conserved, insofar as RNAi-mediated attenuation of their orthologous genes in Drosophila blocks formation of brain tumors engineered in that species. In clinical specimens of high-grade glioma, the levels of expression of both FOXD1 and ALDH1A3 are inversely correlated with patient prognosis. Finally, a novel small-molecule inhibitor of ALDH we developed, termed GA11, displays potent in vivo efficacy when administered systemically in a murine GSC-derived xenograft model of glioblastoma. Collectively, our findings define a FOXD1-ALDH1A3 pathway in controling the clonogenic and tumorigenic potential of MES GSC in glioblastoma tumors. Cancer Res; 76(24); 7219-30. ©2016 AACR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161538 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-15-2860 | DOI Listing |
Biomedicines
May 2025
Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
: Glioblastoma (GBM) is the most malignant brain tumor, with a cellular hierarchy dominated by glioma stem cells (GSCs). Understanding global communications among GSCs and other cells helps us identify potential new therapeutic targets. In this study, multi-transcriptomic analysis was utilized to explore the communication pattern of GSCs in GBM.
View Article and Find Full Text PDFSci Adv
May 2025
Instituto de Biomedicina de Valencia (CSIC), Valencia, Spain.
Originally known for its function in the cell cycle, the anaphase-promoting complex/cyclosome (APC/C) also plays a crucial role in regulating differentiation and maintaining cell identity. However, the mechanisms by which APC/C mediates developmental processes are not fully understood. In this study, we show that APC/C and its activator FZR-1 regulate the chromatin regulators MES-4 and MES-3.
View Article and Find Full Text PDFActa Neuropathol Commun
March 2025
Research Institute of the McGill University Health Centre, 1001 Decarie Boul, Montreal, QC, H4A 3J1, Canada.
High grade gliomas (HGG) are incurable brain cancers, where inevitable disease recurrence is driven by tumour-initiating glioma stem cells (GSCs). GSCs survive and expand in the brain after surgery, radiation and temozolomide (TMZ) chemotherapy, amidst weak immune and natural killer (NK) cell surveillance. The present study was designed to understand how to enhance the contribution of innate immunity to post TMZ disease control.
View Article and Find Full Text PDFNeuro Oncol
May 2025
Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China.
Background: Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China.
Background: The presence of glioma stem cells (GSCs) and the occurrence of mesenchymal phenotype transition contribute to the miserable prognosis of glioblastoma (GBM). Cellular communication network factor 1 (CCN1) is upregulated within various malignancies and associated with cancer development and progression, while the implications of CCN1 in the phenotype transition and tumorigenicity of GSCs remain unclear.
Methods: Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases.