Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The immobilization of gold nanoparticles (AuNPs) with antimicrobial peptides (AMPs) is a new and promising way to enhance both the activity and targeting capabilities of AMPs. However, a full understanding of the adsorption process underlying these materials is still lacking. Cecropin-melittin is a peptide with a broad antimicrobial activity while displaying low hemolytic properties, whose conjugation with AuNPs has not been studied before. In this context, we report the investigation of the adsorption process of the cecropin-melittin peptide, with (CM-SH) and without (CM) cysteine at its C-terminus, onto a gold surface based on all-atom MD simulations. Our results show that the way the peptides approach the surface dictates the final conformation and the time required to achieve it in both CM-SH and CM cases. Most important, it is demonstrated that the presence of cysteine promotes a faster conformational stabilization during the lockdown regime of the CM-SH peptide, noticeably affecting this by acting as a preferential anchoring point. This investigation represents a first step in rationalizing, with atomistic detail, some experimentally observed features of CM-SH and CM immobilized gold nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-016-1160-zDOI Listing

Publication Analysis

Top Keywords

gold surface
8
gold nanoparticles
8
adsorption process
8
cecropin-melittin peptide
8
findings interaction
4
interaction antimicrobial
4
peptide
4
antimicrobial peptide
4
peptide cecropin-melittin
4
gold
4

Similar Publications

Background: Blood pressure (BP) is a common clinical measurement, now increasingly done at home. Media websites often display images of BP measurement to represent clinical medicine, but many images deviate from guidelines, potentially creating misperceptions on how measurement should be performed. We evaluated the accuracy of BP measurement images online according to the 2023 International Consensus on Standardized Clinic BP Measurement.

View Article and Find Full Text PDF

Patchy nanoparticles (NPs) enable directional interactions and dynamic structural transformations, yet controlling polymeric patch formation with high spatial precision remains a significant challenge. Here, a thermally driven approach is presented to forming polystyrene (PS) patches on low-curvature facets of anisotropic gold nanocubes (NCs) using a single polymer component. Heating in DMF above 90 °C triggers selective desorption of PS chains from high-curvature edges and vertices via Au─S bond dissociation, followed by migration and deposition into rounded patches on flat surfaces.

View Article and Find Full Text PDF

In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.

View Article and Find Full Text PDF

Enzymatic Anisotropic Growth of Gold Nanoparticles Based on DNA Origami Templates.

Small Methods

September 2025

Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation.

View Article and Find Full Text PDF

Titanium is widely used for dental implant abutments due to its mechanical strength, biocompatibility, and corrosion resistance; however, its gray coloration can compromise esthetic outcomes, particularly in patients with thin or translucent gingival biotypes. Anodization, a surface modification technique altering the titanium oxide layer, has been proposed to improve soft tissue aesthetics by producing abutments with warmer tones (eg, pink or gold) that harmonize with the surrounding gingiva. This systematic review aimed to evaluate the clinical and aesthetic outcomes of anodized titanium abutments compared to non-anodized titanium and other materials, with a focus on peri-implant soft tissue health and visual integration.

View Article and Find Full Text PDF