98%
921
2 minutes
20
A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2016.06.033 | DOI Listing |
Environ Sci Process Impacts
September 2025
Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.
Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.
View Article and Find Full Text PDFFood Chem Toxicol
September 2025
Division for Laboratory Investigation and Analysis, Swedish Food Agency, Uppsala, Sweden.
Total diet studies monitor exposure to contaminants from food. This study investigates the intakes of the harmful metals silver (Ag), aluminium (Al), arsenic (As), inorganic As, cadmium (Cd), mercury (Hg), nickel (Ni) and lead (Pb) in Swedish young children, adolescents and adults, and relate them to health-based guidance values (HBGV). Whereas intakes of Ag and Al did not give rise to any concern for adverse health effects, most of the young children had intakes of inorganic As (≥97%), Cd (≥71%) and Ni (≥92%, for acute effects) above the HBGV set by European Food Safety Authority.
View Article and Find Full Text PDFJaponica is considered one of the better tasting varieties, so it is important to balance the quality and taste of japonica rice produced by moderate processing. This study analyzed the changes in bioactive components, heavy metal elements, and sensory quality of northern japonica rice after gradient milling, and constructed a comprehensive quality evaluation model for japonica rice with different degrees of milling. The results showed that as the degree of milling (DOM) increased from 0% to 10%, the bioactive components in japonica rice decreased, with dietary fiber (3.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Public Health Sciences, University of Chicago, Chicago, Illinois, United States of America.
Background: In Bangladesh, > 50 million individuals are chronically exposed to inorganic arsenic (iAs) through drinking water, increasing risk for cancer and other iAs-related diseases. Previous studies show that individuals' ability to metabolize and eliminate iAs, and their risk of toxicity, is influenced by genetic variation in the AS3MT and FTCD gene regions.
Methods: To identify additional loci influencing arsenic metabolism, we used data from Bangladeshi individuals to conduct genome-wide association analyses of the relative abundances of arsenic species measured in both urine (n = 6,540) and blood (n = 976).
Environ Sci Technol Lett
August 2024
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, 14853, United States.
Arsenic methylation is the microbe-mediated transformation of inorganic As into methylated species, an important component of the biogeochemical arsenic cycle in rice paddies. Prior to methylation, arsenite is taken up into bacterial cells through GlpF, an aquaglyceroporin channel for uptake of glycerol and other low-molecular-weight organics. The uptake and subsequent biotransformation of arsenite are therefore linked to the bacterial utilization of organics.
View Article and Find Full Text PDF