98%
921
2 minutes
20
The role of type III transforming growth factor-β receptor (TβRIII) in the pathogenesis of heart diseases remains largely unclear. Here, we investigated the functional role and molecular mechanisms of TβRIII in the development of myocardial hypertrophy. Western blot and quantitative real time-polymerase chain reaction analyses revealed that the expression of TβRIII was significantly elevated in human cardiac hypertrophic samples. Consistently, TβRIII expression was substantially increased in transverse aortic constriction (TAC)- and isoproterenol-induced mouse cardiac hypertrophy in vivo and in isoproterenol-induced cardiomyocyte hypertrophy in vitro. Overexpression of TβRIII resulted in cardiomyocyte hypertrophy, whereas isoproterenol-induced cardiomyocyte hypertrophy was greatly attenuated by knockdown of TβRIII in vitro. Cardiac-specific transgenic expression of TβRIII independently led to cardiac hypertrophy in mice, which was further aggravated by isoproterenol and TAC treatment. Cardiac contractile function of the mice was not altered in TβRIII transgenic mice; however, TAC led to significantly decreased cardiac contractile function in TβRIII transgenic mice compared with control mice. Conversely, isoproterenol- and TAC-induced cardiac hypertrophy and TAC-induced cardiac contractile function impairment were partially reversed by suppression of TβRIII in vivo. Our data suggest that TβRIII mediates stress-induced cardiac hypertrophy through activation of Ca(2+)/calmodulin-dependent protein kinase II, which requires a physical interaction of β-arrestin2 with both TβRIII and calmodulin-dependent protein kinase II. Our findings indicate that stress-induced increase in TβRIII expression results in cardiac hypertrophy through β-arrestin2-dependent activation of calmodulin-dependent protein kinase II and that transforming growth factor-β and β-adrenergic receptor signaling are not involved in spontaneous cardiac hypertrophy in cardiac-specific transgenic expression of TβRIII mice. Our findings may provide a novel target for control of myocardial hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07420 | DOI Listing |
Dan Med J
August 2025
Department of Cardiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital.
Introduction: Cardiac amyloidosis is an underdiagnosed disease, and its prevalence is probably higher than previously estimated. We aimed to investigate the effect of introducing a systemic diagnostic algorithm for cardiac amyloidosis in clinical practice.
Methods: A systematic diagnostic algorithm was developed and clinically applied in two hospitals in Eastern Denmark.
Rev Cardiovasc Med
August 2025
Department of Nephrology, Akron Nephrology Associates at Cleveland Clinic Akron General Medical Center, Akron, OH 44302, USA.
Cardiovascular assessments in children and adolescents with hypertension are essential for detecting early signs of organ damage and guiding timely interventions. The pathophysiology of pediatric hypertension involves a complex interplay of arterial stiffness, endothelial dysfunction, metabolic disturbances, activation of the renin-angiotensin-aldosterone system, and immune dysregulation. These mechanisms collectively contribute to target organ damage, particularly in the cardiovascular system.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDFJCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFRadiology
September 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.
View Article and Find Full Text PDF