Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The crystallized free-standing through-hole TiO2 nanotube arrays (TNAs) membranes were fabricated by a facile method. CdS quantum dots (QDs) are assembled onto free-standing through-hole NTAs films using successive ionic layer adsorption and reaction (SILAR) process. The CdS/TNAs were easily transferred to the fluorine-doped tin oxide glass to form photoanodes after they were sensitized by modifying the traditional procedure. The morphology and crystalline phase of the TiO2 nanotubes were studied by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The cells with 5 SILAR cycles show photovoltaic conversion efficiency as high as 3.34% under simulated sunlight (AM 1.5, 100 mW x cm(-2)). Obviously, the new approach promotes the uniform distribution of CdS on the densely aligned TNAs and prevents the clogging of CdS quantum dots (QDs) at the TiO2 nanotube mouth. Such enhanced properties may be ascribed to the strong combination between CdS and TiO2, favorable for charge separation of TNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2016.10905DOI Listing

Publication Analysis

Top Keywords

cds quantum
12
quantum dots
12
free-standing through-hole
12
tio2 nanotube
12
through-hole tio2
8
nanotube arrays
8
dots qds
8
cds
5
tio2
5
novel method
4

Similar Publications

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

Photoreforming of biomass presents a promising approach for sustainable H production by utilizing renewable solar energy under ambient conditions. However, its application is often limited by the poor solubility of biomass-derived substrates. Herein, this challenge is addressed by synthesizing hydrophilic, electron-rich pyridine-based glycopolymers via reversible addition-fragmentation chain transfer polymerization, followed by deacetylation of glucose- and maltose-based segments.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

A novel ternary synergistic photoelectrochemical (PEC) probe is presented utilizing metal-organic framework (MOF)-templated Pd/CdS@CoS nanocages for sensing chlorpyrifos (CPF) using chronoamperometry under an applied bias of - 65 mV with 465-nm LED illumination. Derived from ZIF-67 via in situ sulfidation, the hollow nanocage architecture integrated CdS nanoparticles with CoS to form a direct Z-scheme heterojunction, while decorating Pd quantum dots (QDs) created a Schottky barrier, implementing a crucial dual charge-transfer enhancement strategy. Density functional theory (DFT) simulations confirmed a 0.

View Article and Find Full Text PDF

Contamination by Bacillus anthracis in food and the environment poses a significant public health risk to both humans and animals, with dipicolinic acid (DPA) serving as an effective biomarker for its detection. In this work, a novel AI-assisted near-infrared ratiometric fluorescent sensing system based on rapid coordination cross-linking and multiple fluorescence response mechanisms was proposed for ultrafast and portable visual detection of Bacillus anthracis biomarkers. A near-infrared (NIR) ratiometric fluorescent probe with multiple fluorescence response mechanisms was developed for sensitive detection of DPA, using carbon dots (B-CDs) and CdTe quantum dots (QD686).

View Article and Find Full Text PDF