[Correlation between Plasma microRNA Expression and Acute Graft-Versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Hematology, Tangdu Hosipital, Fourth Military Medical Uiniversity, Xi'an 710038, Shaanxi Province, China. E-mail:

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To investigate the microRNA (miRNA) expression in plasma of patients with aGVHD and without aGVHD after allo-hematopoietic stem cell transplantation (allo-HSCT).

Methods: The miRNAs (miR-423, mirR199a-3p, miR93*, miR377) expression levels in peripheral blood plasma of 25 patients before and after allo-HSCT were detected by real-time PCR.

Results: miR-423, miR199a-3p and miR-93* in aGVHD group were significantly upregulated (P<0.05); miR-377 expression was not significantly different between aGVHD and non-aGVHD (P>0.05).

Conclusion: The expression of miR-423, miR-199a-3p, miR-93* are upregulated in aGVHD group, which can be used as biomarkes to monitor and to diagnose aGVHD.

Download full-text PDF

Source
http://dx.doi.org/10.7534/j.issn.1009-2137.2016.03.036DOI Listing

Publication Analysis

Top Keywords

stem cell
8
plasma patients
8
agvhd group
8
agvhd
5
[correlation plasma
4
plasma microrna
4
expression
4
microrna expression
4
expression acute
4
acute graft-versus-host
4

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Recessive TMEM167A variants cause neonatal diabetes, microcephaly and epilepsy syndrome.

J Clin Invest

September 2025

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.

Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF