Inferring differentially expressed pathways using kernel maximum mean discrepancy-based test.

BMC Bioinformatics

Department of Statistics, University of Barcelona, Diagonal, 643, Barcelona, 08028, Spain.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Pathway expression is multivariate in nature. Thus, from a statistical perspective, to detect differentially expressed pathways between two conditions, methods for inferring differences between mean vectors need to be applied. Maximum mean discrepancy (MMD) is a statistical test to determine whether two samples are from the same distribution, its implementation being greatly simplified using the kernel method.

Results: An MMD-based test successfully detected the differential expression between two conditions, specifically the expression of a set of genes involved in certain fatty acid metabolic pathways. Furthermore, we exploited the ability of the kernel method to integrate data and successfully added hepatic fatty acid levels to the test procedure.

Conclusion: MMD is a non-parametric test that acquires several advantages when combined with the kernelization of data: 1) the number of variables can be greater than the sample size; 2) omics data can be integrated; 3) it can be applied not only to vectors, but to strings, sequences and other common structured data types arising in molecular biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905616PMC
http://dx.doi.org/10.1186/s12859-016-1046-1DOI Listing

Publication Analysis

Top Keywords

differentially expressed
8
expressed pathways
8
fatty acid
8
test
5
inferring differentially
4
pathways kernel
4
kernel maximum
4
maximum discrepancy-based
4
discrepancy-based test
4
test background
4

Similar Publications

Background: Major depressive disorder (MDD) is associated with neuro-immune - metabolic - oxidative (NIMETOX) pathways.

Aims: To examine the connections among NIMETOX pathways in outpatient MDD (OMDD) with and without metabolic syndrome (MetS); and to determine the prevalence of NIMETOX aberrations in a cohort of OMDD patients.

Methods: We included 67 healthy controls and 66 OMDD patients and we assessed various NIMETOX pathways.

View Article and Find Full Text PDF

Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) and reactive intermediates, such as methylglyoxal, are formed during thermal processing of foods and have been implicated in the pathogenesis of a series of chronic inflammatory diseases. AGEs are thought to directly interact with the intestinal epithelium upon ingestion of thermally processed foods, but their effects on intestinal epithelial cells are poorly understood. This study investigated transcriptomic changes in human intestinal epithelial FHs 74 Int cells after exposure to AGE-modified human serum proteins (AGE-HS), S100A12, a known RAGE ligand, and unmodified human serum proteins (HS).

View Article and Find Full Text PDF

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF