3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration.

Int J Biol Macromol

CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal. Electronic address:

Published: December 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nowadays, the incidence of bone disorders has steeply ascended and it is expected to double in the next decade, especially due to the ageing of the worldwide population. Bone defects and fractures lead to reduced patient's quality of life. Autografts, allografts and xenografts have been used to overcome different types of bone injuries, although limited availability, immune rejection or implant failure demand the development of new bone replacements. Moreover, the bacterial colonization of bone substitutes is the main cause of implant rejection. To vanquish these drawbacks, researchers from tissue engineering area are currently using computer-aided design models or medical data to produce 3D scaffolds by Rapid Prototyping (RP). Herein, Tricalcium phosphate (TCP)/Sodium Alginate (SA) scaffolds were produced using RP and subsequently functionalized with silver nanoparticles (AgNPs) through two different incorporation methods. The obtained results revealed that the composite scaffolds produced by direct incorporation of AgNPs are the most suitable for being used in bone tissue regeneration since they present appropriate mechanical properties, biocompatibility and bactericidal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2016.06.004DOI Listing

Publication Analysis

Top Keywords

bactericidal activity
8
bone tissue
8
tissue regeneration
8
scaffolds produced
8
bone
7
printed scaffolds
4
scaffolds bactericidal
4
activity aimed
4
aimed bone
4
regeneration nowadays
4

Similar Publications

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination.

Beilstein J Nanotechnol

August 2025

Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, Jilin, People's Republic of China.

To address the issue of biological pollution in cellulose triacetate (CTA) membranes during seawater desalination, silver (Ag) nanoparticles were incorporated onto the CTA surface using polydopamine (PDA). PDA, which contains phenolic and amino groups, exhibits excellent adhesiveness and provides active sites for the attachment and reduction for Ag nanoparticles. Various characterizations confirm the successful introduction of Ag nanoparticles onto the surface of the PDA-modified CTA (PCTA) membrane and the preservation of CTA microstructures.

View Article and Find Full Text PDF

Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) that mediates chemotaxis and bactericidal activities in phagocytes. The monoclonal antibody 5F1 is generated against full-length FPR1 and used widely for detection of FPR1 expression. This study aimed to characterize 5F1 for its functions.

View Article and Find Full Text PDF

Leprosy, induced by , and in some cases, , remains an important public health issue in endemic regions despite ongoing elimination efforts. Histoid Hansen's disease, a variant of lepromatous leprosy, is characterised by shiny, well-defined nodules and a heavy acid-fast bacillary load. We present a case of a 50-year-old male agricultural worker from rural central India presenting during a community health camp with multiple cutaneous nodules clinically suggestive of histoid leprosy.

View Article and Find Full Text PDF

Background And Aim: Antibiotic resistance poses a growing threat to wound management in veterinary medicine. Blue light phototherapy has emerged as a non-antibiotic bactericidal alternative with additional benefits for wound healing. However, its effectiveness in clinical veterinary contexts remains inadequately explored.

View Article and Find Full Text PDF

Combating the post-antibiotic era crisis: antimicrobial peptide/peptidomimetic-integrated combination therapies and delivery systems.

J Mater Chem B

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Globally, new antibiotic development lags behind the rapid evolution of antibiotic-resistant bacteria. Given the extensive research and development cycles, high costs, and risks associated with new pharmaceuticals, exploring alternatives to conventional antibiotics and enhancing their efficacy and safety is a promising strategy for addressing challenges in the post-antibiotic era. Previous studies have shown that antimicrobial peptides/peptidomimetics (AMPs) primarily use a membrane-disruption mechanism distinct from conventional antibiotics to exert bactericidal effects.

View Article and Find Full Text PDF