Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salinity regimes in estuaries and coastal areas vary with river discharge patterns, seawater evaporation, the morphology of the coastal waterways and the dynamics of marine water mixing. Therefore, microalgae have to respond to salinity variations at time scales ranging from daily to annual cycles. Microalgae may also have to adapt to physical alterations that induce the loss of connectivity between habitats and the enclosure of bodies of water. Here, we integrated physiological assays and measurements of morphological plasticity with a functional genomics approach to examine the regulatory changes that occur during the acclimation to salinity in the estuarine diatom Thalassiosira weissflogii. We found that cells exposed to different salinity regimes for a short or long period presented adjustments in their carbon fractions, silicon pools, pigment concentrations and/or photosynthetic parameters. Salinity-induced alterations in frustule symmetry were observed only in the long-term (LT) cultures. Whole transcriptome analyses revealed a down-regulation of nuclear and plastid encoded genes during the LT response and identified only a few regulated genes that were in common between the ST and LT responses. We propose that in diatoms, one strategy for acclimating to salinity gradients and maintaining optimal cellular fitness could be a reduction in the cost of transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13398DOI Listing

Publication Analysis

Top Keywords

acclimation salinity
8
salinity gradients
8
salinity regimes
8
salinity
6
physiological adjustments
4
adjustments transcriptome
4
transcriptome reprogramming
4
reprogramming involved
4
involved acclimation
4
gradients diatoms
4

Similar Publications

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

TaGW2-TaVOZ1 module regulates wheat salt tolerance via both E3 ligase-dependent and -independent pathways.

Sci Adv

September 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.

Wheat production is limited by the rapid expansion of salinized arable land worldwide. Identification of the molecular mechanisms that underlie the salt stress response is of great importance. Here, we uncovered the NAC-type transcription factor, TaVOZ1, as a positive regulator of wheat salt tolerance.

View Article and Find Full Text PDF

Transcriptomic Analysis of Litopenaeus vannamei: Understanding Salinity Adaptation Mechanisms in Freshwater Environments.

Mar Biotechnol (NY)

September 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.

Litopenaeus vannamei exhibits strong salinity adaptation; however, its survival and growth are significantly reduced in freshwater environments. To investigate the response mechanisms of L. vannamei to freshwater conditions, gill tissues from shrimp cultured for 30 days in both freshwater and seawater environments were used as experimental material in this study.

View Article and Find Full Text PDF

This study investigated the valorisation of seawater desalination brine (61 g L1) by cultivating the halotolerant microalga Prymnesium parvum in 10-L bubble column photobioreactors, previously acclimated to a broad salinity range (5-61 g L1). Under optimized nutrients and irradiance, brine-based cultures achieved biomass yields (1.9 gL1) comparable to seawater controls.

View Article and Find Full Text PDF