Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13997DOI Listing

Publication Analysis

Top Keywords

terrestrial nitrogen
4
nitrogen cycling
4
cycling earth
4
earth system
4
system models
4
models revisited
4
terrestrial
1
cycling
1
earth
1
system
1

Similar Publications

Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.

ISME J

September 2025

Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Biological nitrogen fixation converts atmospheric nitrogen into ammonia, essential to the global nitrogen cycle. While cyanobacterial diazotrophs are well characterized, recent studies have revealed a broad distribution of non-cyanobacterial diazotrophs (NCDs) in marine environments, although their study is limited by poor cultivability. Here we report a previously uncharacterized Bradyrhizobium isolated from the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Invasive predatory fish occupies highest trophic position leading to expansion of isotopic niches in a riverine food web.

Ecology

September 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.

Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.

View Article and Find Full Text PDF

Nitrogen addition substantially affects plant phenology in terrestrial ecosystems: a meta-analysis.

Front Plant Sci

August 2025

College of Geographical Sciences, Faculty of Geographic Science and Engineering, Henan University, Zhengzhou, China.

Introduction: Phenology is a sensitive biological indicator of climate change. Increasing nitrogen (N) deposition has amplified phenological shifts, making their study across terrestrial ecosystems crucial for understanding global change responses. While existing research focuses on single ecosystems, comparative analyses are lacking.

View Article and Find Full Text PDF