Publications by authors named "Sarah E Cornell"

The pressures humanity has been placing on the environment have put Earth's stability at risk. The planetary boundaries framework serves as a method to define a 'safe operating space for humanity' and has so far been applied mostly to highlight the currently prevailing unsustainable environmental conditions. The ability to evaluate trends over time, however, can help us explore the consequences of alternative policy decisions and identify pathways for living within planetary boundaries.

View Article and Find Full Text PDF

This planetary boundaries framework update finds that six of the nine boundaries are transgressed, suggesting that Earth is now well outside of the safe operating space for humanity. Ocean acidification is close to being breached, while aerosol loading regionally exceeds the boundary. Stratospheric ozone levels have slightly recovered.

View Article and Find Full Text PDF

While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead.

View Article and Find Full Text PDF

Recent assessments alarmingly indicate that many of the world's leading chemicals are transgressing one or more of the nine planetary boundaries, which define safe operating spaces within which humanity can continue to develop and thrive for generations to come. The unfolding crisis cannot be ignored and there is a once-in-a-century opportunity for chemistry - the science of transformation of matter - to make a critical difference to the future of people and planet. How can chemists contribute to meeting these challenges and restore stability and strengthen resilience to the planetary system that humanity needs for its survival? To respond to the wake-up call, three crucial steps are outlined: (1) urgently working to understand the nature of the looming threats, from a chemistry perspective; (2) harnessing the ingenuity and innovation that are central to the practice of chemistry to develop sustainable solutions; and (3) transforming chemistry itself, in education, research and industry, to re-position it as 'chemistry for sustainability' and lead the stewardship of the world's chemical resources.

View Article and Find Full Text PDF

Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global "core" tipping elements and regional "impact" tipping elements and their temperature thresholds. Current global warming of ~1.

View Article and Find Full Text PDF

Strengthening resilience-elasticity or adaptive capacity-is essential in responding to the wide range of natural hazards and anthropogenic changes humanity faces. Chemistry's roles in resilience are explored for the first time, with its technical capacities set in the wider contexts of cross-disciplinary working and the intersecting worlds of science, society and policy. The roles are framed by chemistry's contributions to the sustainability of people and planet, examined via the human security framework's four material aspects of food, health, economic and environmental security.

View Article and Find Full Text PDF

While environmental science, and ecology in particular, is working to provide better understanding to base sustainable decisions on, the way scientific understanding is developed can at times be detrimental to this cause. Locked-in debates are often unnecessarily polarised and can compromise any common goals of the opposing camps. The present paper is inspired by a resolved debate from an unrelated field of psychology where Nobel laureate David Kahneman and Garry Klein turned what seemed to be a locked-in debate into a constructive process for their fields.

View Article and Find Full Text PDF
Article Synopsis
  • We need to work hard to protect the plants and animals on Earth, as well as the benefits they give us, like clean air and food.
  • To help with this, we can use special plans to manage land better and restore areas that have been harmed, which could help improve the situation for nature by around 2050.
  • If we also find ways to grow and use food more sustainably (like wasting less food and eating more plants), we could save a lot of wildlife while still making sure everyone has enough to eat.
View Article and Find Full Text PDF

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.

View Article and Find Full Text PDF

Science is increasingly able to identify precautionary boundaries for critical Earth system processes, and the business world provides societies with important means for adaptive responses to global environmental risks. In turn, investors provide vital leverage on companies. Here, we report on our transdisciplinary science/business experience in applying the planetary boundaries framework (sensu Rockström et al.

View Article and Find Full Text PDF

We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene.

View Article and Find Full Text PDF

Coherently addressing the 17 Sustainable Development Goals requires planning tools that guide policy makers. Given the integrative nature of the SDGs, we believe that integrative modelling techniques are especially useful for this purpose. In this paper, we present and demonstrate the use of the new System Dynamics based iSDG family of models.

View Article and Find Full Text PDF

The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries.

View Article and Find Full Text PDF

Identifying and quantifying the statistical relationships between climate and anthropogenic drivers of fire is important for global biophysical modelling of wildfire and other Earth system processes. This study used regression tree and random forest analysis on global data for various climatic and human variables to establish their relative importance. The main interactions found at the global scale also apply regionally: greatest wildfire burned area is associated with high temperature (> 28 °C), intermediate annual rainfall (350-1100 mm), and prolonged dry periods (which varies by region).

View Article and Find Full Text PDF

The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach.

View Article and Find Full Text PDF