Two step Gaussian mixture model approach to characterize white matter disease based on distributional changes.

J Neurosci Methods

The Gruss Magnetic Resonance Research Center, Radiology, The Albert Einstein Collegeof Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, The Albert Einstein Collegeof Medicine, Bronx, NY, USA; The Dominick P Purpura Department of Neuroscience, The Albert Einstein College

Published: September 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Magnetic resonance imaging reveals macro- and microstructural correlates of neurodegeneration, which are often assessed using voxel-by-voxel t-tests for comparing mean image intensities measured by fractional anisotropy (FA) between cases and controls or regression analysis for associating mean intensity with putative risk factors. This analytic strategy focusing on mean intensity in individual voxels, however, fails to account for change in distribution of image intensities due to disease.

New Method: We propose a method that aims to facilitate simple and clear characterization of underlying distribution. Our method consists of two steps: subject-level (Step 1) and group-level or a specific risk-level density function estimation across subjects (Step 2).

Results: The proposed method was demonstrated with a simulated data set and real FA data sets from two white matter tracts, where the proposed method successfully detected any departure of the FA distribution from the normal state by disease: p<0.001 for simulated data; p=0.047 for the posterior limb of internal capsule; p=0.06 for the posterior thalamic radiation.

Comparison With Existing Method(s): The proposed method found significant disease effect (p<0.001) while conventional 2-group t-test focused only on mean intensity did not (p=0.61) in a simulation study. While significant age effects were found for each white matter tract from conventional linear model analysis with real FA data, the proposed method further confirmed that aging also triggers distribution-wide change.

Conclusion: Our proposed method is powerful for detection of risk factors associated with any type of microstructural neurodegenerations with brain imaging data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683897PMC
http://dx.doi.org/10.1016/j.jneumeth.2016.04.024DOI Listing

Publication Analysis

Top Keywords

white matter
8
image intensities
8
proposed method
8
method
5
step gaussian
4
gaussian mixture
4
mixture model
4
model approach
4
approach characterize
4
characterize white
4

Similar Publications

Cortical Thinning and Microstructural Integrity Disruption in White Matter Hyperintensities.

Brain Res Bull

September 2025

Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, 230601, He Fei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230032, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230032, Hefei,

Background: The relationships between white matter microstructure, cortical atrophy, and cognitive function in cerebral small vessel disease (CSVD)-related white matter hyperintensities (WMHs) patients are unclear.

Methods: 71 right-handed WMHs patients (mild, n=23; moderate, n=27; severe, n=21) and 35 healthy controls were included. Tract-based spatial statistics (TBSS) assessed microstructure via fractional anisotropy (FA) and mean diffusivity (MD).

View Article and Find Full Text PDF

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF

Neuroimaging Biomarkers in Postpartum Depression: A Comprehensive Review of Structural, Functional, and Metabolic Alterations.

Behav Brain Res

September 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, Shandong, China. Electronic address:

Postpartum Depression (PPD) is a significant perinatal mood disorder affecting many new mothers in the first postpartum year. It is characterized by emotional, cognitive, and behavioral changes, often leading to delayed diagnosis due to nonspecific symptoms. PPD arises from a complex interplay of neuroendocrine, genetic, and psychosocial factors.

View Article and Find Full Text PDF

Premature infants are at high risk for brain injuries such as intraventricular hemorrhage and periventricular white matter injury. This study applies omics technology to analyze urinary protein expression, aiming to clarify preterm brain injury mechanisms and identify therapeutic targets. Urine samples were collected from 29 very preterm infants (VPI) without brain injury and 11 with moderate/severe injury at eight time points: Days 1, 2, 3, 4, 6, 8, 28, and term-equivalent age (TEA).

View Article and Find Full Text PDF

[Children's brains with gender dysphoria. Effects of hormones and puberty blockers on a developing brain. An ethical approach].

Cuad Bioet

September 2025

Facultad de Farmacia y Nutrición de la Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona.

In recent years, there has been a significant increase in minors with gender dysphoria (GD) seeking transition treatments, including puberty blockers and cross-sex hormones. The developing child's brain exhibits structural and functional differences in children with GD compared to cisgender children, particularly in areas where sex differences exist. Brain development during childhood and adolescence is strongly influenced by sex hormones.

View Article and Find Full Text PDF