Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gold nanoparticles (AuNPs) with antitumorigenic effects obstruct the initiation, development and progression of tumors via the regulation of various processes, such as proliferation and apoptosis. However, the effects of AuNPs on breast cancer metastasis have not been well studied, and their response to 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation remains unclear. Therefore, we synthesized resveratrol-capped gold nanoparticles (Rev-AuNPs) using green nanotechnology and investigated their potential anti-invasive properties in human breast cancer cells in response to TPA stimulation. The Rev-AuNPs formed spherical nanoparticles of 22.28±2.98 nm in diameter. Next, we found that non-cytotoxic concentrations of Rev-AuNPs significantly suppressed the TPA-induced migration and invasion abilities of breast cancer cells. Rev-AuNPs suppressed TPA-induced enzymatic activity and the expression of matrix metalloproteinase (MMP)-9 and cyclooxygenase-2 (COX-2). Furthermore, Rev-AuNP treatment remarkably downregulated TPA-induced nuclear translocation and transcriptional activation of nuclear transcription factor-κB (NF-κB) and activator protein-1 (AP-1). Rev-AuNPs reduced the phosphorylation of phosphoinositide 3-kinase/Akt (PI3K/Akt) and extracellular signal-regulated kinase (ERK)1/2 signaling, but did not affect the phosphorylation of Jun N-terminal kinase (JNK) or p38 MAPK in the TPA-stimulated breast cancer cells. Notably, Rev-AuNPs generally showed better anti-invasive activity than resveratrol without cytotoxicity. The inhibitory effect of Rev-AuNPs on MMP-9, COX-2, NF-κB, AP-1, PI3K/Akt and ERK activation was stronger than that of resveratrol for the same concentrations. We also demonstrated that Rev-AuNPs induced heme oxygenase-1 (HO-1) expression and that the inhibition of MMP-9 and COX-2 expression and MMP-9 enzymatic activity of Rev-AuNPs were abrogated by siRNA knockdown of HO-1 expression. Our findings revealed that the anti-invasive effects of Rev-AuNPs in response to TPA-stimulation were mediated by the suppression of MMP-9, COX-2, NF-κB, AP-1, PI3K/Akt and ERK and/or the activation of HO-1 signaling cascades. This novel finding emphasizes the pharmacological ability of Rev-AuNPs to treat breast cancer metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2016.4716DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
mmp-9 cox-2
16
cancer cells
16
rev-aunps
11
cox-2 expression
8
gold nanoparticles
8
cancer metastasis
8
tpa stimulation
8
rev-aunps suppressed
8
suppressed tpa-induced
8

Similar Publications

Objective: This study aimed to probe the role of Shenling Baizhu powder (SLBZP) in inhibiting breast cancer (BC) lung metastasis, focusing on epithelial-to-mesenchymal transition (EMT) and ferroptosis.

Methods: BC 4T1 cells were treated with low (3.13 µg/mL) and high (12.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the main causes of cancer-related death in women. The purpose of this study was to evaluate the expression of miR-605-5p in BC and its diagnostic and prognostic value. BC patients and healthy individuals who met the study criteria were included.

View Article and Find Full Text PDF

Noncoding RNA regulatory networks play crucial roles in human breast cancer. The aim of this study was to establish a network containing multi-type RNAs and RBPs in triple-negative breast cancer (TNBC). Differential expression analyses of lncRNAs, miRNAs, and genes were performed using the GEO2R tool.

View Article and Find Full Text PDF

Invasive ductal carcinoma (IDC) is a major type of breast cancer. The utilization of inhibitors targeting histone methyltransferases introduces novel therapeutic avenues for the treatment of cancer. Immunohistochemistry, Western blot, and reverse transcription quantitative polymerase chain reaction experiments were applied to assess the levels of EHMT2 in IDC and adjacent tissues.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF