Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics.

Sci Adv

Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia.

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plants grow in dynamic environments where they can be exposed to a multitude of stressful factors, all of which affect their development, yield, and, ultimately, reproductive success. Plants are adept at rapidly acclimating to stressful conditions and are able to further fortify their defenses by retaining memories of stress to enable stronger or more rapid responses should an environmental perturbation recur. Indeed, one mechanism that is often evoked regarding environmental memories is epigenetics. Yet, there are relatively few examples of such memories; neither is there a clear understanding of their duration, considering the plethora of stresses in nature. We propose that this field would benefit from investigations into the processes and mechanisms enabling recovery from stress. An understanding of stress recovery could provide fresh insights into when, how, and why environmental memories are created and regulated. Stress memories may be maladaptive, hindering recovery and affecting development and potential yield. In some circumstances, it may be advantageous for plants to learn to forget. Accordingly, the recovery process entails a balancing act between resetting and memory formation. During recovery, RNA metabolism, posttranscriptional gene silencing, and RNA-directed DNA methylation have the potential to play key roles in resetting the epigenome and transcriptome and in altering memory. Exploration of this emerging area of research is becoming ever more tractable with advances in genomics, phenomics, and high-throughput sequencing methodology that will enable unprecedented profiling of high-resolution stress recovery time series experiments and sampling of large natural populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788475PMC
http://dx.doi.org/10.1126/sciadv.1501340DOI Listing

Publication Analysis

Top Keywords

stress recovery
12
recovery rna
8
environmental memories
8
recovery
7
stress
6
memories
5
reconsidering plant
4
plant memory
4
memory intersections
4
intersections stress
4

Similar Publications

Cancer is a leading cause of global mortality, significantly impacted by treatment resistance and the toxicity of conventional therapies like chemotherapy and radiation. Recent studies show that anastasis-the recovery of cells from near-death states-as a key mechanism promoting cancer relapse and apoptosis resistance. During anastasis, stress-induced caspase activation allows cancer cells to survive, increase chemoresistance, and enhance metastatic potential.

View Article and Find Full Text PDF

Introduction: Relapse rates following adolescent substance use disorder (SUD) treatment remain high, highlighting a need for innovative interventions that improve engagement and target key psychosocial mechanisms of recovery. Drawing on Social Cognitive Theory, this pilot study evaluated a novel, strength-based Entrepreneurial Education Program (EEP) designed to reduce relapse risk by increasing self-efficacy, positive affect, and emotion regulation.

Methods: Twenty-seven adolescent males (M age = 15.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common yet severe cerebrovascular disorder associated with high morbidity, disability, and mortality rates. Kaempferol (Kae), a natural flavonoid with potent antioxidant and anti-inflammatory properties, has shown promise in neuroprotection; however, its therapeutic potential in promoting neurological recovery after ICH remains unclear. In this study, we investigated the neuroprotective effects of Kae in ICH and explored its underlying mechanisms using in vitro and in vivo models.

View Article and Find Full Text PDF

Flooding-induced oxygen deprivation (anoxia) is a challenge to plant survival, necessitating adaptive mechanisms for recovery. This study investigates elemental redistribution during anoxia recovery using time-series elemental imaging to show changes in nutrient distribution. Focusing on the role of Cation/H⁺ Exchangers (CAXs) in Arabidopsis thaliana, we show how mutants deficient in specific CAX transporters (cax1 and the cax1-4 quadruple mutant; qKO) respond to anoxia and metal stress.

View Article and Find Full Text PDF

Plectin affects cell viscoelasticity at small and large deformations.

Biophys J

September 2025

Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629 HZ, The Netherlands. Electronic address:

Plectin is a giant protein of the plakin family that crosslinks the cytoskeleton of mammalian cells. It is expressed in virtually all tissues and its dysfunction is associated with various diseases such as skin blistering. There is evidence that plectin regulates the mechanical integrity of the cytoskeleton in diverse cell and tissue types.

View Article and Find Full Text PDF