98%
921
2 minutes
20
We demonstrate the type-II staggered band alignment in MoTe2/MoS2 van der Waals (vdW) heterostructures and an interlayer optical transition at ∼1.55 μm. The photoinduced charge separation between the MoTe2/MoS2 vdW heterostructure is verified by Kelvin probe force microscopy (KPFM) under illumination, density function theory (DFT) simulations and photoluminescence (PL) spectroscopy. Photoelectrical measurements of MoTe2/MoS2 vdW heterostructures show a distinct photocurrent response in the infrared regime (1550 nm). The creation of type-II vdW heterostructures with strong interlayer coupling could improve our fundamental understanding of the essential physics behind vdW heterostructures and help the design of next-generation infrared optoelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b00980 | DOI Listing |
Adv Mater
September 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.
Superconductivity and magnetism are two of the most extensively studied ordered systems in condensed matter physics. Recent advancements in the fabrication of van der Waals (vdW) layered materials have significantly advanced the exploration of both fundamental physics and practical applications within their heterostructures. The focus not only lies on the coexisting mechanism between superconductivity and magnetism, but also highlights the potential of these atomically thin layers to serve as crucial components in future superconducting circuits.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States.
To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.
View Article and Find Full Text PDFUsing Density Functional Theory (DFT) calculations, we explored the electronic band structure and contact type (Schottky and Ohmic) at the interface of VS-BGaX (X = S, Se) metal-semiconductor (MS) van der Waals heterostructures (vdWHs). The thermal and dynamical stabilities of the investigated systems were systematically validated using energy-strain analysis, molecular dynamics (AIMD) simulations, as well as binding energy and phonon spectrum calculations. After analyzing the band structure, VS-BGaX (X = S, Se) MS vdWHs metallic behavior with type-III band alignment is revealed.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2025
State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China.
Magnetic van der Waals (vdW) heterostructures (HSs), whose interface engineering enables versatile manipulation of charge and spin transfer, have received considerable interest. However, the dynamics underlying these exotic interfacial phenomena require deeper investigation. In this work, we investigated the interfacial charge transfer dynamics in a HS comprising layered antiferromagnetic NiPS and transition metal dichalcogenide WS.
View Article and Find Full Text PDF