Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time. Here we use these two approaches to investigate selective responses to the spread of an infectious cancer--devil facial tumor disease (DFTD)--that since 1996 has ravaged the Tasmanian devil (Sarcophilus harrisii). Using time-series 'restriction site associated DNA' (RAD) markers from populations pre- and post DFTD arrival, and DFTD free populations, we infer loci under selection due to DFTD and investigate signatures of selection that are incongruent among methods, populations, and times. The lack of congruence among populations influenced by DFTD with respect to inferred loci under selection, and the direction of that selection, fail to implicate a consistent selective role for DFTD. Instead genetic drift is more likely driving the observed allele frequency changes over time. Our study illustrates the importance of applying methods with different performance optima e.g. accounting for population structure and background selection, and assessing congruence of the results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773136PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147875PLOS

Publication Analysis

Top Keywords

loci selection
16
detecting selection
8
selective responses
8
facial tumor
8
tumor disease
8
selection
8
spread infectious
8
populations
5
dftd
5
selection temporal
4

Similar Publications

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an extremely aggressive brain tumor, marked by restricted therapeutic possibilities and a generally unfavorable prognosis. GBM's complexity and heterogeneity necessitate comprehensive genetic and immunological profiling to enhance therapeutic strategies.

Methods: The study integrated The Cancer Genome Atlas (TCGA) and Integrative Epidemiology Unit Open Genome-Wide Association Studies (IEU OpenGWAS) data to identify genetic factors influencing GBM using expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Genome-wide association study reveals candidate loci for resistance to anthracnose in blueberry.

G3 (Bethesda)

September 2025

Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

Anthracnose, caused by Colletotrichum gloeosporioides, poses a significant threat to blueberries, necessitating a deeper understanding of the genetic mechanisms underlying resistance to develop efficient breeding strategies. Here, we conducted a genome-wide association study on 355 advanced selections of southern highbush blueberry from the University of Florida Blueberry Breeding and Genomics Program. Visual scores and image analyses were used for assessing disease severity.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF

Precision plant epigenome editing: what, how, and why.

Trends Plant Sci

September 2025

School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia, 4072. Electronic address:

Advances in genome engineering have paved the way for targeted epigenome engineering, providing fundamental insights into the role of epigenetic modifications in trait inheritance. Engineered epialleles have already delivered stable, heritable changes in agronomic traits. Despite this capacity, progress in the field has not yet achieved its potential, leaving many avenues of research unexplored.

View Article and Find Full Text PDF