Publications by authors named "Barbara R Holland"

Mapping genotypes to phenotypes is a fundamental goal in biology. Phylogenetic Genotype to Phenotype mapping methods are a relatively new set of tools that aim to identify genomic regions associated with trait variation between species. Here, we review recent developments in Phylogenetic Genotype to Phenotype mapping methods, focusing on three key areas: methods based on replicated substitutions at individual amino acid sites; methods detecting changes in evolutionary rates; and methods analyzing gene duplication and loss.

View Article and Find Full Text PDF

The scale and resolution of trait databases and molecular phylogenies is increasing rapidly. These resources permit many open questions in comparative biology to be addressed with the right statistical tools. Multi-response (MR) phylogenetic mixed models (PMMs) offer great potential for multivariate analyses of trait evolution.

View Article and Find Full Text PDF

Microsatellites are widely used in population genetics, but their evolutionary dynamics remain poorly understood. It is unclear whether microsatellite loci drift in length over time. This is important because the mutation processes that underlie these important genetic markers are central to the evolutionary models that employ microsatellites.

View Article and Find Full Text PDF

Perennial plant species from water-limiting environments (including climates of extreme drought, heat and freezing temperatures) have evolved traits that allow them to tolerate these conditions. As such, traits that are associated with water stress may show evidence of adaptation to climate when compared among closely related species inhabiting contrasting climatic conditions. In this study, we tested whether key hydraulic traits linked to drought stress, including the vulnerability of leaves to embolism (P50 leaf) and the minimum diffusive conductance of shoots (gmin), were associated with climatic characteristics of 14 Tasmanian eucalypt species from sites that vary in precipitation and temperature.

View Article and Find Full Text PDF

In molecular phylogenetics, partition models and mixture models provide different approaches to accommodating heterogeneity in genomic sequencing data. Both types of models generally give a superior fit to data than models that assume the process of sequence evolution is homogeneous across sites and lineages. The Akaike Information Criterion (AIC), an estimator of Kullback-Leibler divergence, and the Bayesian Information Criterion (BIC) are popular tools to select models in phylogenetics.

View Article and Find Full Text PDF

Proteins form arguably the most significant link between genotype and phenotype. Understanding the relationship between protein sequence and structure, and applying this knowledge to predict function, is difficult. One way to investigate these relationships is by considering the space of protein folds and how one might move from fold to fold through similarity, or potential evolutionary relationships.

View Article and Find Full Text PDF

Phylogenetic trees describe relationships between extant species, but beyond that their shape and their relative branch lengths can provide information on broader evolutionary processes of speciation and extinction. However, currently many of the most widely used macro-evolutionary models make predictions about the shapes of phylogenetic trees that differ considerably from what is observed in empirical phylogenies. Here, we propose a flexible and biologically plausible macroevolutionary model for phylogenetic trees where times to speciation or extinction events are drawn from a Coxian phase-type (PH) distribution.

View Article and Find Full Text PDF

The use of information criteria to distinguish between phylogenetic models has become ubiquitous within the field. However, the variety and complexity of available models are much greater now than when these practices were established. The literature shows an increasing trajectory of healthy skepticism with regard to the use of information theory-based model selection within phylogenetics.

View Article and Find Full Text PDF

Molecular phylogenetics plays a key role in comparative genomics and has increasingly significant impacts on science, industry, government, public health and society. In this paper, we posit that the current phylogenetic protocol is missing two critical steps, and that their absence allows model misspecification and confirmation bias to unduly influence phylogenetic estimates. Based on the potential offered by well-established but under-used procedures, such as assessment of phylogenetic assumptions and tests of goodness of fit, we introduce a new phylogenetic protocol that will reduce confirmation bias and increase the accuracy of phylogenetic estimates.

View Article and Find Full Text PDF

The function of a protein is primarily determined by its structure and amino acid sequence. Many biological questions of interest rely on being able to accurately determine the group of structures to which domains of a protein belong; this can be done through alignment and comparison of protein structures. Dozens of different methods for Protein Structure Alignment (PSA) have been proposed that use a wide range of techniques.

View Article and Find Full Text PDF

A matrix Lie algebra is a linear space of matrices closed under the operation [Formula: see text]. The "Lie closure" of a set of matrices is the smallest matrix Lie algebra which contains the set. In the context of Markov chain theory, if a set of rate matrices form a Lie algebra, their corresponding Markov matrices are closed under matrix multiplication; this has been found to be a useful property in phylogenetics.

View Article and Find Full Text PDF
Article Synopsis
  • Ancestral state reconstruction methods may yield inaccurate results, especially in evolutionary systems with traits under directional selection.
  • Error rates for these methods increase with factors like node depth, the number of state transitions, and rates of transition and extinction, sometimes exceeding 30% in challenging scenarios.
  • The study found that BiSSE generally performed better than Mk2 and maximum parsimony, particularly when speciation or extinction depended on the character state, but maximum parsimony did better when transition rates were asymmetrical and favored the ancestral state.
View Article and Find Full Text PDF

The size of plant stomata (adjustable pores that determine the uptake of CO and loss of water from leaves) is considered to be evolutionarily important. This study uses fossils from the major Southern Hemisphere family Proteaceae to test whether stomatal cell size responded to Cenozoic climate change. We measured the length and abundance of guard cells (the cells forming stomata), the area of epidermal pavement cells, stomatal index and maximum stomatal conductance from a comprehensive sample of fossil cuticles of Proteaceae, and extracted published estimates of past temperature and atmospheric CO.

View Article and Find Full Text PDF

The underlying structure of the canonical amino acid substitution matrix (aaSM) is examined by considering stepwise improvements in the differential recognition of amino acids according to their chemical properties during the branching history of the two aminoacyl-tRNA synthetase (aaRS) superfamilies. The evolutionary expansion of the genetic code is described by a simple parameterization of the aaSM, in which (i) the number of distinguishable amino acid types, (ii) the matrix dimension and (iii) the number of parameters, each increases by one for each bifurcation in an aaRS phylogeny. Parameterized matrices corresponding to trees in which the size of an amino acid sidechain is the only discernible property behind its categorization as a substrate, exclusively for a Class I or II aaRS, provide a significantly better fit to empirically determined aaSM than trees with random bifurcation patterns.

View Article and Find Full Text PDF

Molecular sequence data that have evolved under the influence of heterotachous evolutionary processes are known to mislead phylogenetic inference. We introduce the General Heterogeneous evolution On a Single Topology (GHOST) model of sequence evolution, implemented under a maximum-likelihood framework in the phylogenetic program IQ-TREE (http://www.iqtree.

View Article and Find Full Text PDF

We give a non-technical introduction to convergence-divergence models, a new modeling approach for phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge, i.e. become more similar over time.

View Article and Find Full Text PDF

Identifying factors responsible for the emergence and evolution of social complexity is an outstanding challenge in evolutionary biology. Here we report results from a phylogenetic comparative analysis of over 1000 species of squamate reptile, nearly 100 of which exhibit facultative forms of group living, including prolonged parent-offspring associations. We show that the evolution of social groupings among adults and juveniles is overwhelmingly preceded by the evolution of live birth across multiple independent origins of both traits.

View Article and Find Full Text PDF

Accurate estimation of evolutionary distances between taxa is important for many phylogenetic reconstruction methods. Distances can be estimated using a range of different evolutionary models, from single nucleotide polymorphisms to large-scale genome rearrangements. Corresponding corrections for genome rearrangement distances fall into 3 categories: Empirical computational studies, Bayesian/MCMC approaches, and combinatorial approaches.

View Article and Find Full Text PDF

Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees.

View Article and Find Full Text PDF

Widespread species spanning strong environmental (e.g., climatic) gradients frequently display morphological and physiological adaptations to local conditions.

View Article and Find Full Text PDF

Background: Gene duplication has been identified as a key process driving functional change in many genomes. Several biological models exist for the evolution of a pair of duplicates after a duplication event, and it is believed that gene duplicates can evolve in different ways, according to one process, or a mix of processes. Subfunctionalization is one such process, under which the two duplicates can be preserved by dividing up the function of the original gene between them.

View Article and Find Full Text PDF

We introduce a gene tree simulator that is designed for use in conjunction with approximate Bayesian computation approaches. We show that it can be used to determine the relative importance of hybrid speciation and introgression compared with incomplete lineage sorting (ILS) in producing patterns of incongruence across gene trees. Important features of the new simulator are (1) a choice of models to capture the decreasing probability of successful hybrid species formation or introgression as a function of genetic distance between potential parent species; (2) the ability for hybrid speciation to result in asymmetrical contributions of genetic material from each parent species; (3) the ability to vary the rates of hybrid speciation, introgression, and divergence speciation in different epochs; and (4) incorporation of the coalescent, so that patterns of incongruence due to ILS can be compared with those due to hybrid evolution.

View Article and Find Full Text PDF

Wastewater-based epidemiology is increasingly being used as a tool to monitor drug use trends. To minimize costs, studies have typically monitored a small number of days. However, cycles of drug use may display weekly and seasonal trends that affect the accuracy of monthly or annual drug use estimates based on a limited number of samples.

View Article and Find Full Text PDF

Detecting loci under selection is an important task in evolutionary biology. In conservation genetics detecting selection is key to investigating adaptation to the spread of infectious disease. Loci under selection can be detected on a spatial scale, accounting for differences in demographic history among populations, or on a temporal scale, tracing changes in allele frequencies over time.

View Article and Find Full Text PDF

The yeast Candida albicans, a commensal colonizer and occasional pathogen of humans, has a rudimentary mating ability. However, mating is a cumbersome process that has never been observed outside the laboratory, and the population structure of the species is predominantly clonal. Here we discuss recent findings that indicate that mating ability is under selection in C.

View Article and Find Full Text PDF