98%
921
2 minutes
20
Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work. Material characterization reveals the diffusion of sulfur into the oxide layer prior to the formation of the MS2. By controlling the sulfur diffusion, we are able to synthesize continuous MS2 layers beneath the top oxide layer, creating a protective coating layer for the newly formed TMD. Air-stable and low-power photosensing devices fabricated on the synthesized 2D WS2 without the need for a further transfer process demonstrate the potential applicability of TMDs generated via a laser irradiation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b00033 | DOI Listing |
ACS Nano
September 2025
Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.
View Article and Find Full Text PDFStroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110V, Valparaíso, Chile.
Reversible control of spin-dependent thermoelectricity mechanical strain provides a platform for next-generation energy harvesting and thermal logic circuits. Using first-principles and Boltzmann transport calculations, we demonstrate that monolayer NiI undergoes a strain-driven semiconductor-to-half-metal transition, enabled by the selective closure of its spin-down band gap while preserving a robust ferromagnetic ground state. Remarkably, this transition is accompanied by a giant, non-monotonic violation of the Wiedemann-Franz law, with the Lorenz number enhanced up to 7.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Material Science Lab, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India.
The transition to a net-zero carbon economy hinges on the development of sustainable, efficient, and economically viable energy technologies. Here, we present a green, electricity-free auto-combustion synthesis of a multifunctional FeNi@MnO@C electrocatalyst, demonstrating outstanding performance for OER, HER, OWS, UOR, UOS, and OWS in alkaline seawater with a required potential of 1.45, 0.
View Article and Find Full Text PDF