Publications by authors named "Teng-Yu Su"

Zinc ion batteries have been extensively studied with an aqueous electrolyte system. However, the batteries suffer from a limited potential window, gas evolution, cathode dissolution, and dendrite formation on the anode. Considering these limitations, we developed an alternative electrolyte system based on deep eutectic solvents (DESs) because of their low cost, high stability, biodegradability, and non-flammability, making them optimal candidates for sustainable batteries.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDCs) have recently attracted a tremendous amount of attention owing to their superior optical and electrical properties as well as the interesting and various nanostructures that are created by different synthesis processes. However, the atomic thickness of TMDCs limits the light absorption and results in the weak performance of optoelectronic devices, such as photodetectors. Here, we demonstrate the approach to increase the surface area of TMDCs by a one-step synthesis process of TMDC nanowalls from WO into three-dimensional (3D) WS nanowalls.

View Article and Find Full Text PDF

The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe-based AIB shows a high specific capacity of 753 mAh g at a current density of 0.

View Article and Find Full Text PDF

In this work, we demonstrated nano-scaled Laue diffractions by a focused polychromatic synchrotron radiation beam to discover what happens in MoS when van der Waals epitaxy is locally invalid. A stronger exciton recombination with a local charge depletion in the density of 1 × 10 cm, extrapolated by Raman scattering and photoluminescence, occurs in grains, which exhibits a preferred orientation of 30° rotation with respect to the -plane of a sapphire substrate. Else, the charge doping and trion recombination dominate instead.

View Article and Find Full Text PDF

Aluminum-sulfur batteries (ASBs) have attracted substantial interest due to their high theoretical specific energy density, low cost, and environmental friendliness, while the traditional sulfur cathode and ionic liquid have very fast capacity decay, limiting cycling performance because of the sluggishly electrochemical reaction and side reactions with the electrolyte. Herein, we demonstrate, for the first time, excellent rechargeable aluminum-selenium batteries (ASeBs) using a new deep eutectic solvent, thiourea-AlCl, as an electrolyte and Se nanowires grown directly on a flexible carbon cloth substrate (Se NWs@CC) by a low-temperature selenization process as a cathode. Selenium (Se) is a chemical analogue of sulfur with higher electronic conductivity and lower ionization potential that can improve the battery kinetics on the sluggishly electrochemical reaction and the reduction of the polarization where the thiourea-AlCl electrolyte can stabilize the side reaction during the reversible conversion reaction of Al-Se alloying processes during the charge-discharge process, yielding a high specific capacity of 260 mAh g at 50 mA g and a long cycling life of 100 times with a high Coulombic efficiency of nearly 93% at 100 mA g.

View Article and Find Full Text PDF

Three-dimensional (3D) CuO/TiO hybrid heterostructure nanorod arrays (NRs) with noble-metal-free composition, fabricated by template-assisted low-cost processes, were used as the photo-Fenton-like catalyst for dye degradation. Here, CuO NRs were deposited into anodic aluminum oxide templates by electrodeposition method annealed at various temperatures, followed by deposition of TiO thin films through E-gun evaporation, resulting in the formation of CuO/TiO p-n heterojunction. The distribution of elements and compositions of the CuO/TiO p-n heterojunction were analyzed by EDS mapping and EELS profiles, respectively.

View Article and Find Full Text PDF

We demonstrate a highly sensitive, low-cost, environmental-friendly pressure sensor derived from a wool-based pressure sensor with wide pressure sensing range using wool bricks embedded with a Ag nano-wires. The easy fabrication and light weight allow portable and wearable device applications. Wth the integration of a light-emitting diode possessing multi-wavelength emission, we illustrate a hybrid multi-functional LED-integrated pressure sensor that is able to convert different applied pressures to light emission with different wavelengths.

View Article and Find Full Text PDF

In this work, three-dimensional (3D) CoMoSe nanosheet arrays on network fibers of a carbon cloth denoted as CoMoSe@C converted directly from CoMoO nanosheet arrays prepared by a hydrothermal process followed by the plasma-assisted selenization at a low temperature of 450 °C as an anode for sodium-ion battery (SIB) were demonstrated for the first time. With the plasma-assisted treatment on the selenization process, oxygen (O) atoms can be replaced by selenium (Se) atoms without the degradation on morphology at a low selenization temperature of 450 °C. Owing to the high specific surface area from the well-defined 3D structure, high electron conductivity, and bi-metal electrochemical activity, the superior performance with a large sodium-ion storage of 475 mA h g under 0.

View Article and Find Full Text PDF

Utilization of light to boost the performance of gas sensors allows us to operate sensor devices at room temperature. Here, we, for the first time, demonstrated an indoor light-activated 3D cone-shaped MoS2 bilayer-based NO gas sensor with ppb-level detection operated at room-temperature. Large-area cone-shaped (CS)-MoS2 bilayers were grown by depositing 2 nm-thick MoO3 layers on a 2'' three-dimensional (3D) cone-patterned sapphire substrate (CPSS) followed by a sulfurization process via chemical vapor deposition.

View Article and Find Full Text PDF

In this work, polymethylmethacrylate (PMMA) as a superior mediate for the pressure welding of silver nanowires (Ag NWs) networks as transparent electrodes without any thermal treatment is demonstrated. After a pressing of 200 kg cm , not only the sheet resistance but also the surface roughness of the PMMA-mediated Ag NWs networks decreases from 2.6 kΩ sq to 34.

View Article and Find Full Text PDF

Selenium (Se) is one of the potential candidates as photodetector because of its outstanding properties such as high photoconductivity (∼8 × 10 S cm), piezoelectricity, thermoelectricity, and nonlinear optical responses. Solution phase synthesis becomes an efficient way to produce Se, but a contamination issue that could deteriorate the electric characteristic of Se should be taken into account. In this work, a facile, controllable approach of synthesizing Se nanowires (NWs)/films via a plasma-assisted growth process was demonstrated at the low substrate temperature of 100 °C.

View Article and Find Full Text PDF

Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs.

View Article and Find Full Text PDF

The formation of PtSe -layered films is reported in a large area by the direct plasma-assisted selenization of Pt films at a low temperature, where temperatures, as low as 100 °C at the applied plasma power of 400 W can be achieved. As the thickness of the Pt film exceeds 5 nm, the PtSe -layered film (five monolayers) exhibits a metallic behavior. A clear p-type semiconducting behavior of the PtSe -layered film (≈trilayers) is observed with the average field effective mobility of 0.

View Article and Find Full Text PDF

Direct reduction of metal oxides into a few transition metal dichalcogenide (TMDCs) monolayers has been recently explored as an alternative method for large area and uniform deposition. However, not many studies have addressed the characteristics and requirement of the metal oxides into TMDCs by the selenization/sulfurization processes, yielding a wide range of outstanding properties to poor electrical characteristics with nonuniform films. The large difference implies that the process is yet not fully understood.

View Article and Find Full Text PDF

Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation.

View Article and Find Full Text PDF

The necessity for new sources for greener and cleaner energy production to replace the existing ones has been increasingly growing in recent years. Of those new sources, the hydrogen evolution reaction has a large potential. In this work, for the first time, MoSe /Mo core-shell 3D-hierarchical nanostructures are created, which are derived from the Mo 3D-hierarchical nanostructures through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.

View Article and Find Full Text PDF

Although chemical vapor deposition is the most common method to synthesize transition metal dichalcogenides (TMDs), several obstacles, such as the high annealing temperature restricting the substrates used in the process and the required transfer causing the formation of wrinkles and defects, must be resolved. Here, we present a novel method to grow patternable two-dimensional (2D) transition metal disulfides (MS2) directly underneath a protective coating layer by spin-coating a liquid chalcogen precursor onto the transition metal oxide layer, followed by a laser irradiation annealing process. Two metal sulfides, molybdenum disulfide (MoS2) and tungsten disulfide (WS2), are investigated in this work.

View Article and Find Full Text PDF

Germanene layers with lonsdaleite structure has been synthesized from a SiGe thin film for the first time using a N2 plasma-assisted process in this investigation. Multi-layered germanene can be directly observed, and the derived lattice parameters are nearly consistent with the theoretical results. Furthermore, large-scale multi-layered germanene has also been demonstrated for applications.

View Article and Find Full Text PDF

Two-dimensional layered materials such as graphene, transition metal dichalcogenides, and black phosphorus have demonstrated outstanding properties due to electron confinement as the thickness is reduced to atomic scale. Among the phosphorus allotropes, black phosphorus, and violet phosphorus possess layer structure with the potential to be scaled down to atomically thin film. For the first time, the plasma-assisted synthesis of atomically layered violet phosphorus has been achieved.

View Article and Find Full Text PDF

Recently, a few attempts to synthesize monolayers of transition metal dichalcogenides (TMDs) using the chemical vapor deposition (CVD) process had been demonstrated. However, the development of alternative processes to synthesize TMDs is an important step because of the time-consuming, required transfer and low thermal efficiency of the CVD process. Here, we demonstrate a method to achieve few-layers WSe2 on an insulator via laser irradiation assisted selenization (LIAS) process directly, for which the amorphous WO3 film undergoes a reduction process in the presence of selenium gaseous vapors to form WSe2, utilizing laser annealing as a heating source.

View Article and Find Full Text PDF

Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area.

View Article and Find Full Text PDF

Tunable multilevel storage of complementary resistive switching (CRS) on single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering was demonstrated for the first time. In addition, the performance of the ZnO/ZnWOx-based CRS device with the voltage- and current-sweep modes was demonstrated and investigated in detail. The resistance switching behaviors of the ZnO/ZnWOx bilayer ReRAM with adjustable RESET-stop voltages was explained using an electrochemical redox reaction model whose electron-hopping activation energies of 28, 40, and 133 meV can be obtained from Arrhenius equation at RESET-stop voltages of 1.

View Article and Find Full Text PDF