Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate a highly sensitive, low-cost, environmental-friendly pressure sensor derived from a wool-based pressure sensor with wide pressure sensing range using wool bricks embedded with a Ag nano-wires. The easy fabrication and light weight allow portable and wearable device applications. Wth the integration of a light-emitting diode possessing multi-wavelength emission, we illustrate a hybrid multi-functional LED-integrated pressure sensor that is able to convert different applied pressures to light emission with different wavelengths. Due to the high sensitivity of the pressure sensor, the demonstration of acoustic signal detection has also been presented using sound of a metronome and a speaker playing a song. This multi-functional pressure sensor can be implemented to technologies such as smart lighting, health care, visible light communication (VLC), and other internet of things (IoT) applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.035448DOI Listing

Publication Analysis

Top Keywords

pressure sensor
24
pressure
8
highly sensitive
8
sensor
6
pressure color
4
color based
4
based integration
4
integration highly
4
sensitive pressure
4
sensor emission
4

Similar Publications

Flexible, multifunctional sensor based on core-sheath sensing medium for humidity sensing and heat-resistant pressure.

Biosens Bioelectron

September 2025

School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China; Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China. Electronic address:

The practical implementation of wearable sensing devices for human health monitoring requires significant advancements in lightweight design and multifunctional integration. Fiber-shaped sensors have attracted considerable research attention due to their ability to maintain exceptional sensitivity and measurement accuracy under various mechanical deformations, including bending, stretching, and torsion. Nevertheless, the functional integration remains constrained, particularly as evidenced by sensitivity degradation and device failure under extreme high-temperature conditions, which severely hinders their practical applicability for real-time health monitoring applications in complex environmental scenarios.

View Article and Find Full Text PDF

Developing intelligent robots with integrated sensing capabilities is critical for advanced manufacturing, medical robots, and embodied intelligence. Existing robotic sensing technologies are limited to recording of acceleration, driving torque, pressure feedback, and so on. Expanding and integrating with the multimodal sensors to mimic and even surpass the human feeling is substantially underdeveloped.

View Article and Find Full Text PDF

Bioinspired Multifunctional Eutectogels for Skin-Like Flexible Strain Sensors with Potential Application in Deep-Learning Handwriting Recognition.

Langmuir

September 2025

Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.

Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.

View Article and Find Full Text PDF

Real-Time Continuous Tongue Pressure Measurement With Mouthguard-Type Pressure-Sensing Device.

Orthod Craniofac Res

September 2025

Department of Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.

Objective: It is well-established that occlusion and dental arch form are related to the morphology and function of the oral soft tissues. Oral soft tissue dynamic assessment is important for elucidating the causes of malocclusion and developing effective treatment methods. We previously developed a small mouthguard-type sensing device for measuring oral soft tissue pressure; however, its continuous measurement performance had not been thoroughly evaluated.

View Article and Find Full Text PDF