Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b02444DOI Listing

Publication Analysis

Top Keywords

band gap
12
mos bilayers
12
thermally strained
8
strained band
8
gap engineering
8
engineering transition-metal
8
transition-metal dichalcogenide
8
dichalcogenide bilayers
8
patterned sapphire
8
sapphire structures
8

Similar Publications

Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)PbI.

J Phys Chem Lett

September 2025

Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.

View Article and Find Full Text PDF

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO) is a semiconductor with multiferroic properties, synthesized by the sol-gel method. While static high-pressure studies have advanced our understanding of the phase behavior of BiFeO, the effects of dynamic pressure acoustic shock waves remain unexplored. In this study, BiFeO was subjected to 100 shock pulses with 0.

View Article and Find Full Text PDF

Achieving superior energy storage performance in dielectric materials under low electric fields remains a challenge. Most recent advancements require high fields that limit device applicability. Developing dielectric capacitors with high recoverable energy density (W), efficiency (η), and energy-storage coefficient (W/E) at low/moderate fields is critical for safer, compact, and durable electronics.

View Article and Find Full Text PDF

Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.

View Article and Find Full Text PDF