Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid development of spin noise spectroscopy of the last decade has led to a number of remarkable achievements in the fields of both magnetic resonance and optical spectroscopy. In this report, we demonstrate a new - magnetometric - potential of the spin noise spectroscopy and use it to study magnetic fields acting upon electron spin-system of an n-GaAs layer in a high-Q microcavity probed by elliptically polarized light. Along with the external magnetic field, applied to the sample, the spin noise spectrum revealed the Overhauser field created by optically oriented nuclei and an additional, previously unobserved, field arising in the presence of circularly polarized light. This "optical field" is directed along the light propagation axis, with its sign determined by sign of the light helicity. We show that this field results from the optical Stark effect in the field of the elliptically polarized light. This conclusion is supported by theoretical estimates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756372PMC
http://dx.doi.org/10.1038/srep21062DOI Listing

Publication Analysis

Top Keywords

spin noise
16
polarized light
12
magnetic fields
8
noise spectroscopy
8
elliptically polarized
8
light
5
field
5
spin
4
noise explores
4
explores local
4

Similar Publications

Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

September 2025

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.

View Article and Find Full Text PDF

Comparison of Low-Rank Denoising Methods for Dynamic Deuterium MRSI at 7 T.

NMR Biomed

October 2025

High Field MR Center, Department for Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Dynamic deuterium (H)-MRSI enables mapping of metabolic fluxes in vivo, but its sensitivity is hampered by the low H gyromagnetic ratio and H-labelled metabolite concentrations. Low-rank denoising can enhance MRSI sensitivity by separating signal from noise. Several methods have been proposed, but the optimal approach for dynamic H-MRSI remains unclear.

View Article and Find Full Text PDF

Achieving high-fidelity and robust qubit manipulations is a crucial requirement for realizing fault-tolerant quantum computation. Here, we demonstrate a single-hole spin qubit in a germanium quantum dot and characterize its control fidelity using gate set tomography. The maximum control fidelities reach 97.

View Article and Find Full Text PDF

Dynamic decoupling (DD) can suppress decoherence caused by environmental noise, while in hybrid system it also hinders coherent manipulation between qubits. We realized the universal high-fidelity quantum gate set and the preparation of Bell states using dynamical decoupling gates (DD gates) in a silicon-based phosphorus-doped (Si:P) system, effectively resolving the contradiction between decoherence protection and manipulation of qubits. The simulation results show that the fidelity of the universal quantum gate set are all above 99%, and the fidelity of Bell state preparation is over 96%.

View Article and Find Full Text PDF

High-Resolution 3T MRI of the Membranous Labyrinth Using Deep Learning Reconstruction.

AJNR Am J Neuroradiol

August 2025

From the Guilloz Imaging Department, Central Hospital, University Hospital of Nancy, 54000 Nancy, France (F.B, U.P,PA.G-T, A.B,R.G); From Department of Radiology, Mayo Clinic, Rochester, MN 55901, USA (JI.L, RJ.W). From Université de Lorraine, CIC, Innovation Technologique, University Hospital Cent

Background And Purpose: The labyrinth is a complex anatomical structure in the temporal bone. However, high-resolution imaging of its membranous portion is challenging due to its small size and the limitations of current MRI techniques. Deep Learning Reconstruction (DLR) represents a promising approach to advancing MRI image quality, enabling higher spatial resolution and reduced noise.

View Article and Find Full Text PDF