Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many preclinical studies show that electroacupuncture (EA) on PC6 and ST36 can reduce infarct size after ischemia-reperfusion (IR) injury. Yet studies to enhance the treatment effect size are limited. The purpose of this study was to explore whether EA has additional myocardial protective effects on an ischemia-reperfusion (IR) injury rat model when back-shu EA and moxibustion are added. SD rats were divided into several groups and treated with either EA only, EA + back-shu EA (B), or EA + B + moxibustion (M) for 5 consecutive days. Transthoracic echocardiography and molecular and immunohistochemical evaluations were performed. It was found that although myocardial infarct areas were significantly lower and cardiac function was also significantly preserved in the three treatment groups compared to the placebo group, there were no additional differences between the three treatment groups. In addition, HSP20 and HSP27 were expressed significantly more in the treatment groups. The results suggest that adding several treatments does not necessarily increase protection. Our study corroborates previous findings that more treatment, such as prolonging EA duration or increasing EA intensity, does not always lead to better results. Other methods of increasing treatment effect size should be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4736192PMC
http://dx.doi.org/10.1155/2015/625645DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
12
treatment groups
12
treatment size
8
back-shu moxibustion
8
three treatment
8
treatment
6
additional effects
4
effects back-shu
4
back-shu electroacupuncture
4
electroacupuncture moxibustion
4

Similar Publications

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.

View Article and Find Full Text PDF

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF