Effects of transcranial direct current stimulation of primary somatosensory cortex on vibrotactile detection and discrimination.

J Neurophysiol

Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada; and Groupe de Recherche sur le Système Nerveux Central, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anodal transcranial direct current stimulation (a-tDCS) of primary somatosensory cortex (S1) has been shown to enhance tactile spatial acuity, but there is little information as to the underlying neuronal mechanisms. We examined vibrotactile perception on the distal phalanx of the middle finger before, during, and after contralateral S1 tDCS [a-, cathodal (c)-, and sham (s)-tDCS]. The experiments tested our shift-gain hypothesis, which predicted that a-tDCS would decrease vibrotactile detection and discrimination thresholds (leftward shift of the stimulus-response function with increased gain/slope) relative to s-tDCS, whereas c-tDCS would have the opposite effects (relative to s-tDCS). The results showed that weak a-tDCS (1 mA, 20 min) led to a reduction in both vibrotactile detection and discrimination thresholds to 73-76% of baseline during the application of the stimulation in subjects categorized as responders. These effects persisted after the end of a-tDCS but were absent 30 min later. Most, but not all, subjects showed a decrease in threshold (8/12 for detection; 9/12 for discrimination). Intersubject variability was explained by a ceiling effect in the discrimination task. c-tDCS had no significant effect on either detection or discrimination threshold. Taken together, our results supported our shift-gain hypothesis for a-tDCS but not c-tDCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869499PMC
http://dx.doi.org/10.1152/jn.00506.2015DOI Listing

Publication Analysis

Top Keywords

detection discrimination
16
vibrotactile detection
12
transcranial direct
8
direct current
8
current stimulation
8
primary somatosensory
8
somatosensory cortex
8
shift-gain hypothesis
8
discrimination thresholds
8
relative s-tdcs
8

Similar Publications

Bacterial volatile organic compounds (VOCs) have been investigated as non-invasive approaches for the diagnosis of infectious diseases. Here, we aimed to explore potential diagnostic markers by profiling VOCs in cultures of unique clinical Clostridioides difficile (C. difficile) isolates and stool samples from pediatric patients with C.

View Article and Find Full Text PDF

Organophosphorus nerve agents (OPNAs), including G-agents, EGA (ethyltabun, phosphonamidic acid, P-cyano-N,N-diethyl-, ethyl ester) and V-agents, VM (O-ethyl S-(2-diethylaminoethyl) phosphonothiolate), are highly toxic chemical warfare agents (CWAs) with severe risks to human health and environmental security. This study proposes a chemometric-driven framework for forensic tracing of their synthetic pathways using high-resolution GC × GC-TOFMS. By integrating advanced statistical analysis, we identified 160 synthesis-associated chemical attribution signatures (CAS) for EGA and 138 process-specific CAS for VM, with 11 overlapping markers, including ethoxyphosphates and diethylaminoethylamine derivatives.

View Article and Find Full Text PDF

Background: Ecological momentary assessment (EMA) is increasingly being incorporated into intervention studies to acquire a more fine-grained and ecologically valid assessment of change. The added utility of including relatively burdensome EMA measures in a clinical trial hinges on several psychometric assumptions, including that these measure are (1) reliable, (2) related to but not redundant with conventional self-report measures (convergent and discriminant validity), (3) sensitive to intervention-related change, and (4) associated with a clinically relevant criterion of improvement (criterion validity) above conventional self-report measures (incremental validity).

Objective: This study aimed to evaluate the reliability, validity, and sensitivity to change of conventional self-report versus EMA measures of rumination improvement.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF