Aminoacyl-Transfer RNA Synthetase Deficiency Promotes Angiogenesis via the Unfolded Protein Response Pathway.

Arterioscler Thromb Vasc Biol

From the Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (D.C., A.E.D., B.D.L., M.F.M., M.R.S., V.N.P., J.T.-V., K.B., K.M.S., M.K., B.M.W.); and Department of Chemistry and Biochemistry, College of Compute

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars(y58)) or isoleucyl tRNA synthetase (iars(y68)), lead to similar increased branching angiogenesis in developing zebrafish.

Approach And Results: The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars(y58) and iars(y68) mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase-activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars(y58) mutants.

Conclusions: Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway-dependent upregulation of vegfaa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808418PMC
http://dx.doi.org/10.1161/ATVBAHA.115.307087DOI Listing

Publication Analysis

Top Keywords

unfolded protein
20
protein response
20
aminoacyl-transfer rna
12
response pathway
12
rna synthetase
8
trna synthetase
8
endoplasmic reticulum
8
protein
6
unfolded
5
response
5

Similar Publications

Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.

View Article and Find Full Text PDF

The energy landscape of folding in n-C14H30 described by a machine-learned potential.

J Chem Phys

September 2025

Yusuf Hamied Department of Chemistry. Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Folding and unfolding in molecules as simple as short hydrocarbons and as complicated as large proteins continue to be an active research field. Here, we investigate folding in n-C14H30 using both density functional theory (DFT)/B3LYP calculations of 27 772 local minima and a kinetic transition network calculated for a previously reported potential energy surface (PES) obtained by fitting roughly 250 000 B3LYP energies. In addition to generating a database of minima and the transition states that connect them, these calculations and the PES based on them have been used to develop a simple and accurate model for the energy landscape.

View Article and Find Full Text PDF

Mammalian mitohormesis: from mitochondrial stressors to organismal benefits.

EMBO J

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, 94720, USA.

A variety of stressors, including environmental insults, pathological conditions, and transition states, constantly challenge cells that, in turn, activate adaptive responses to maintain homeostasis. Mitochondria have pivotal roles in orchestrating these responses that influence not only cellular energy production but also broader physiological processes. Mitochondria contribute to stress adaptation through mechanisms including induction of the mitochondrial unfolded protein response (UPR) and the integrated stress response (ISR).

View Article and Find Full Text PDF

Quinoa protein-dextran conjugates as functional stabilizers for curcumin-loaded Nanoemulsions.

Food Res Int

November 2025

Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:

This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.

View Article and Find Full Text PDF

Assessment of the effect of metal-phenolic networks on the IgE/IgG binding capacity and functional properties of whey protein isolates.

Food Res Int

November 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:

Whey protein isolate (WPI) is an important food ingredient, but its high allergenicity limit its application. Recently, metal-phenolic networks (MPNs) have been shown to be effective in modifying proteins. The aim of this study was to evaluate the effects of MPNs formed from (-)-epigallocatechin-3-gallate (EGCG) and Fe on the structure, antibody-binding capacity, and functional properties of WPI.

View Article and Find Full Text PDF