Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(Z)-1,2-Di(1-pyrenyl)disilene containing bulky 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl (Eind) groups has been obtained as purple crystals by the reductive coupling reaction of the corresponding dibromosilane with lithium naphthalenide. An X-ray crystallographic analysis revealed an Eind- and pyrenyl-meshed molecular gear around the disilene core adopting the Z configuration, in which the two pyrenyl groups intramolecularly interact through the π-π stacking with a distance of 3.635 Å between the centers of the two pyrene rings. The disilene π-system exhibits a π(Si-Si) → π*(pyrene) intramolecular charge-transfer (ICT) fluorescence at room temperature, whose wavelengths depend on the solvent polarity. The photophysical properties are theoretically supported by computational studies including excited-state calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b11970DOI Listing

Publication Analysis

Top Keywords

intramolecular charge-transfer
8
z-12-di1-pyrenyldisilene synthesis
4
synthesis structure
4
structure intramolecular
4
charge-transfer emission
4
emission z-12-di1-pyrenyldisilene
4
z-12-di1-pyrenyldisilene bulky
4
bulky 11335577-octaethyl-s-hydrindacen-4-yl
4
11335577-octaethyl-s-hydrindacen-4-yl eind
4
eind groups
4

Similar Publications

Unlocking High-Performance Electrochemiluminescence in Supramolecular Coordination Frameworks via π-Bridge Engineering and Aggregation.

Small

September 2025

School of Chemistry and Chemical Engineering, Key Lab of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China.

Aggregation-induced electrochemiluminescence (AIECL) is a promising strategy for enhancing electrochemiluminescence (ECL) efficiency by minimizing energy loss of excited-state ECL emitters. However, rational design of high-efficiency AIECL emitters is hindered by limited mechanistic understanding and an unclear structure-performance relationship. To address this, four supramolecular coordination frameworks (SCFs) with varying π-bridge structures are synthesized using pyridine-functionalized tetraphenylethene (TPE) as the ligand and Pt(II) as the coordination center.

View Article and Find Full Text PDF

Inverting the Rhodamine Paradigm: Closed-Form Fluorescence with 280 nm Stokes Shift Drives Plastic Circularity.

Angew Chem Int Ed Engl

September 2025

Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Department of Chemistry and Chemical Engineering, ShaanXi Normal University, Xi'an, 710062, P.R. China.

Rhodamine derivatives exhibiting inverted open-closed form fluorescence behavior redefines conventional photochemical paradigms while illuminating new structure-property relationships and fascinating application potentials. Herein, we report a donor-acceptor engineering strategy that activates closed form emission in rhodamines, achieving unprecedented Stokes shifts (>280 nm) while overcoming aggregation-caused quenching. The new class of rhodamines with inverted open-close form emission behavior are created through simultaneous substitution of N,N-diethyl groups with indole (donor) and conversion of spiro-lactam to benzene sulfonamide (acceptor).

View Article and Find Full Text PDF

Recently photoinduced dynamic ligation in a metal-organic frameworks (MOFs) was reported, where a long-lived charge-transfer excited state (ca. 30 μs) featuring partial dissociation between the carboxylate linker and metal-based node was probed by time-resolved infrared (TRIR) spectroscopy. The study offers a new mechanistic perspective to evaluate the potential contribution from the excited state molecular configuration to the performance of MOF photocatalysts.

View Article and Find Full Text PDF

Unveiling additive effects on molecular packing and charge transfer in organic solar cells: an AIMD and DFT study.

Phys Chem Chem Phys

September 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China.

Additive assisted strategies play a crucial role in optimizing the morphology and improving the performance of organic solar cells (OSCs), yet the molecular-level mechanisms remain unclear. Here, we employ molecular dynamics (AIMD) and density functional theory (DFT) to elucidate the influence of typical additives of 1,8-diiodooctane (DIO) and 3,5-dichlorobromobenzene (DCBB) on molecular packing, electronic structures, and charge transport. It can be observed that both additives can enhance the stacking properties of the donor and acceptor materials, yet they have different effects on the local electrostatic environment.

View Article and Find Full Text PDF

Computer simulations play an essential role in the interpretation of experimental multiphoton absorption spectra. In addition, models derived from theory allow for the establishment of "structure-property" relationships. This work contributes to these efforts and presents the results of an analysis of two- and three-photon absorptions for a set comprising 450 conjugated molecules performed at the CAM-B3LYP/aug-cc-pVDZ level.

View Article and Find Full Text PDF