Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The liver is crucial for systemic inflammation in cancer cachexia. Previous studies have shown that L-carnitine, as the key regulator of lipid metabolism, exerts an anti-inflammatory effect in several diseases, and ameliorates the symptoms of cachexia by regulating the expression and activity of carnitine palmitoyltransferase (CPT) in the liver. However, the effect of L-carnitine on the liver inflammatory response in cancer cachexia remains to be elucidated. The aim of the present study was to examine the role of the CPT I-dependent peroxisome proliferator-activated receptor (PPAR)γ signaling pathway in the ameliorative effect of L-carnitine on the liver inflammatory response. This was investigated in a colon-26 tumor-bearing mouse model with cancer cachexia. Liver sections were immunohistochemically analyzed, and mRNA and protein levels of representative molecules of the CPT-associated PPARγ signaling pathway were assessed using PCR and western blot analysis, respectively. The results showed that oral administration of L-carnitine in these mice improved hepatocyte necrosis, liver cell cord derangement and hydropic or fatty degeneration of the liver cells in the liver tissues, decreased serum levels of malondialdehyde, increased serum levels of superoxide dismutase and glutathione peroxidase, and elevated the expression levels of PPARα and PPARγ at the mRNA and protein levels. These changes induced by L-carnitine were reversed by treatment with etomoxir, an inhibitor of CPT I. The inhibitory effect of L-carnitine on the increased expression level of nuclear factor (NF)-κB p65 in the peripheral blood mononuclear cells was markedly weakened by GW9662, a selective inhibitor of PPAR-γ. GW9662 also eliminated the inhibitory effect of L-carnitine on the expression of cyclooxygenase-2 (Cox-2) in the liver, and on the serum expression levels of pro-inflammatory prostaglandin E2, C-reactive protein, tumor necrosis factor-α and interleukin-6 in the cancer cachexia model mice. This reversing effect of GW9662 on L-carnitine was restored by pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB signaling. Taken together, these results demonstrated that L-carnitine ameliorated liver inflammation and serum pro-inflammatory markers in cancer cachexia through regulating CPT I-dependent PPARγ signaling, including the downstream molecules of NF-κB p65 and Cox-2.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4639DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
20
pparγ signaling
16
liver inflammatory
12
inflammatory response
12
liver
11
l-carnitine
10
carnitine palmitoyltransferase
8
i-dependent pparγ
8
cachexia regulating
8
l-carnitine liver
8

Similar Publications

Background: Combination therapy with enfortumab vedotin plus pembrolizumab (EV+P) is now the preferred first-line (1L) therapy for advanced urothelial carcinoma (aUC), but prognostic indicators for patients on 1L EV+P have not yet been described.

Patients And Methods: We conducted a retrospective cohort study of patients receiving 1L EV+P for aUC. We analyzed deidentified electronic health record data from the Flatiron Health database to identify adults with aUC who initiated EV+P between April 3, 2023 and December 31, 2024.

View Article and Find Full Text PDF

Purpose: There are no methods for assessing the need for multimodal care in cancer cachexia. We examined nine components in evaluating needs among advanced cancer patients.

Methods: This was a self-administered survey.

View Article and Find Full Text PDF

Eggs play an important role in skeletal muscle development, but their active components are unknown. The aim of this study was to investigate the effect of yolk extract-derived vitellogenin 2 on dexamethasone (DEX)- and cancer cachexia (CC)-induced skeletal muscle atrophy. We used iTRAQ to detect the changes in protein expression between fertilized egg yolk extract (FEYE) and unfertilized egg yolk extract (UEYE).

View Article and Find Full Text PDF

Of hope from fading will: Interoceptive signaling and the behavioral biology of cachexia.

Neuron

September 2025

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Northwell Health, New Hyde Park, NY 11042, USA. Electronic address:

This NeuroView explores how systemic cancer signals induce behavioral changes via brain-body communication pathways, framing cachexia as an adaptive yet unsustainable interoceptive response. Recognizing patient-reported symptoms as biological signals offers new avenues for intervention and understanding brain-disease interactions.

View Article and Find Full Text PDF