Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Levan, fructose-composed biopolymer of bacterial origin, has potential in biotechnology due to its prebiotic and immunostimulatory properties. In this study levan synthesized by levansucrase from Pseudomonas syringae was thoroughly characterized and used as multifunctional biocompatible coating material for microelement-nanoparticles (NPs) of selenium, iron and cobalt. Transmission electron microscopy (TEM), hydrodynamic size measurements (DLS) and X-ray photoelectron spectroscopy (XPS) showed the interaction of levan with NPs. Levan stabilized the dispersions of NPs, decreased their toxicity and had protective effect on human intestinal cells Caco-2. In addition, levan attached to cobalt NPs remained accessible as a substrate for the colon bacteria Bacteroides thetaiotaomicron. We suggest that the combination of levan and nutritionally important microelements in the form of NPs serves as a first step towards a novel "2 in 1" approach for food supplements to provide safe and efficient delivery of microelements for humans and support beneficial gut microbiota with nutritional oligosaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.09.093DOI Listing

Publication Analysis

Top Keywords

coating material
8
material microelement-nanoparticles
8
levan
7
nps
5
bacterial polysaccharide
4
polysaccharide levan
4
levan stabilizing
4
stabilizing non-toxic
4
non-toxic functional
4
functional coating
4

Similar Publications

Hydridoborate-Based Solid Electrolytes for All-Solid-State Batteries.

Adv Mater

September 2025

College of Smart Materials and Future Energy, Fudan University, Shanghai, 200433, P. R. China.

All-solid-state batteries (ASSBs) utilizing solid electrolytes, which replace flammable liquid electrolytes, are regarded as one of the most promising prospective energy storage devices due to their inherent safety advantages and high energy density potential. As an emerging class of electrolytes for ASSBs, hydridoborates have attracted research interest because of their attractive material properties, including superior compatibility with metal anodes, low gravimetric density, and excellent solution processability. In this review, hydridoborate-based solid electrolytes (SEs) for all-solid-state batteries, including boranuide-based SEs, arachno-hydridoborate-based SEs, nido-hydridoborate-based SEs, closo-hydridoborate-based SEs, and conjuncto-hydridoborate-based SEs, are comprehensively summarized.

View Article and Find Full Text PDF

Homologous nanocellulose modification: A "like cures like" strategy against coffee-ring and infiltration effects in paper-based colorimetric detection.

Anal Chim Acta

November 2025

NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China. Electronic address:

Background: While paper-based colorimetric assays have seen significant progress in recent years, persistent challenges including the coffee-ring effect and infiltration effect continue to affect the color uniformity of detection results, leading to decreased sensitivity and accuracy of the detection. Recent advancements in suppressing these two effects mainly depend on chemical modification of cellulose fibers or application of specific functional coatings. However, the former's complex procedures impede large-scale implementation, while the latter's non-cellulosic additives risk unpredictable interactions with analytes or interference in colorimetric reactions.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF

The construction of perfluoropolyether (PFPE) slippery liquid-infused porous surfaces (SLIPS) on gold coatings is one of the most effective strategies for bestowing anticoagulation and antimicrobial properties on the material. However, the poor chemical affinity between fluorinated porous precursors and gold substrates causes the agglomeration of nanostructures, resulting in uneven nanoporous morphology and accelerating lubricant leakage. Simultaneously, the weak interfacial adhesion between the nanostructures and the substrate may lead to the detachment of nanostructures under blood circulation.

View Article and Find Full Text PDF

Development of chitosan coating loaded with solvothermal-prepared cerium oxide for banana preservation.

Int J Biol Macromol

September 2025

Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam. Electronic address:

In this work, cerium oxide nanoparticles prepared through the solvothermal route (sCeO NPs) are integrated into chitosan (CH) matrices to serve as an efficient coating for banana preservation. The morphological, structural, mechanical, and water-barrier properties of nanocomposite films integrated with various sCeO concentrations were investigated to determine the optimal sCeO NPs concentration within the film matrix. Furthermore, the sensory evaluation and physicochemical properties of the coated and uncoated bananas, including visual attributes, peel browning, CO production, firmness, weight loss, ripening rate (based on total soluble solids and titratable acidity), and pH, are considered during storage.

View Article and Find Full Text PDF