Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, systemic administration of a human monoclonal antibody directed against cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) expressed on circulating T cells in patients with chronic lymphocytic leukaemia (CLL) has been considered. Also, CLL cells have been shown to express CTLA-4, increased levels of which in the leukaemic compartment are a predictor of good clinical outcome. Since both CLL and Treg microenvironment cells can be targeted by the CTLA-4 blocking antibody in this immunotherapy approach, the investigation of the functional effect of CTLA-4 blockade on CLL cells might be of potential clinical relevance. The main aim of this study was to examine the effect of CTLA-4 blockade on proliferation activity and apoptosis of CLL cells in patients with low and high CTLA-4 expression. We found that in the high CTLA-4-expressing CLL group, CTLA-4 blockade on the CLL cell surface resulted in a significant increase in the median percentages of Ki67(+) cells and a tendency to decrease in the proportion of apoptotic cells. In contrast, in the low CTLA-4 expressors, CTLA-4 blockade did not affect the proliferation activity or the frequency of apoptosis. This study reports for the first time the different effect of CTLA-4 blockade on CLL cells in CLL patients depending on the levels of CTLA-4 expression. CTLA-4 blockade seems to induce pro-survival signals in leukaemic cells from CLL patients exhibiting high CTLA-4 expression, suggesting that an immunotherapy approach based on the systemic use of monoclonal anti-CTLA-4 antibodies could be an unfavourable strategy for some CLL patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844645PMC
http://dx.doi.org/10.1007/s13277-015-4217-1DOI Listing

Publication Analysis

Top Keywords

ctla-4 blockade
24
cll cells
20
ctla-4 expression
16
ctla-4
15
cll
13
blockade cll
12
cll patients
12
cells
10
patients chronic
8
chronic lymphocytic
8

Similar Publications

The effect of CD40 agonist antibody therapy on the pancreatic cancer microenvironment.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.

The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is defined by a myeloid-enriched microenvironment and has shown remarkable resistance to immune checkpoint blockade (e.g., PD-1 and CTLA-4).

View Article and Find Full Text PDF

Advances in Tumor Microenvironment and Immunotherapeutic Strategies for Hepatocellular Carcinoma.

Oncol Res

September 2025

Department of Biliary-Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Hepatocellular carcinoma (HCC) is a highly aggressive malignancy, largely driven by an immunosuppressive tumor microenvironment (TME) that facilitates tumor growth, immune escape, and resistance to therapy. Although immunotherapy-particularly immune checkpoint inhibitors (ICIs)-has transformed the therapeutic landscape by restoring T cell-mediated anti-tumor responses, their clinical benefit as monotherapy remains suboptimal. This limitation is primarily attributed to immunosuppressive components within the TME, including tumor-associated macrophages, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).

View Article and Find Full Text PDF

Gliomas are aggressive brain tumors of glial origin accounting for about 80% of the central nervous system (CNS) malignancies. Glioma cells are known to form a highly immunosuppressive tumor microenvironment (TME) capable of inhibiting T cell activation and protecting tumors from elimination by the immune system. One of the predominant immune inhibitory mechanisms in the TME are immune checkpoints: a complex system of membrane-bound ligands on tumor and immune cells that interact with surface receptors on T lymphocytes and affect their activation and cytotoxicity.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, yet most patients fail to achieve durable responses. To better understand the tumor microenvironment (TME), we analyze single-cell RNA-seq (~189 K cells) from 36 metastatic melanoma samples, defining 14 cell types, 55 subtypes, and 15 transcriptional hallmarks of malignant cells. Correlations between cell subtype proportions reveal six distinct clusters, with a mature dendritic cell subtype enriched in immunoregulatory molecules (mregDC) linked to naive T and B cells.

View Article and Find Full Text PDF