[Advances in microRNA and graft-versus-host disease].

Zhonghua Xue Ye Xue Za Zhi

Institute of Hematology, the Fourth Military Medical University, Tang Du Hospital, Xi'an 710038, China.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364950PMC
http://dx.doi.org/10.3760/cma.j.issn.0253-2727.2015.10.022DOI Listing

Publication Analysis

Top Keywords

[advances microrna
4
microrna graft-versus-host
4
graft-versus-host disease]
4
[advances
1
graft-versus-host
1
disease]
1

Similar Publications

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

MicroRNAs in anthracycline cardiotoxicity: biomarkers, mechanisms, and therapeutic advances.

Front Cardiovasc Med

August 2025

Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China.

Background: Anthracycline-based chemotherapy is a highly effective treatment for numerous cancers, yet its clinical use is severely limited by cumulative, dose-dependent cardiotoxicity. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, play a pivotal role in the pathophysiology of cardiovascular disease, but their specific functions in anthracycline-induced cardiotoxicity (AIC) require systematic elucidation.

Purpose: This review aims to systematically summarize current research on the key miRNAs, their molecular targets, and associated signaling pathways that regulate AIC, while also exploring their potential as biomarkers for early diagnosis and as therapeutic targets for intervention.

View Article and Find Full Text PDF

Serum-derived exomiR-188-3p is a promising novel biomarker for early-stage ovarian cancer.

Open Med (Wars)

August 2025

Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156, Nankai Sanma Road, Xingnan Street, Nankai District, Tianjin, 300100, China.

Background: The exosomal microRNAs (exomiRNAs) are promising novel biomarkers for clinical detection and prognosis assessment of human cancers. The aim of this study was to identify potential exomiRNAs as biomarkers in ovarian cancer (OC).

Methods: The candidate exomiRNAs were screened by analysis of GSE235525, GSE239685, and GSE216150 datasets and further validated in exosome samples from the serum of 61 patients with OC and OC cell lines by qPCR.

View Article and Find Full Text PDF

Umbilical cord blood-derived exosomes deliver miR-182-5p to Therapeutically target the MYD88/NF-κB signaling pathway in rat peri-implantitis.

Mater Today Bio

October 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Peri-implantitis (PI) is a major cause of implant restoration failure, necessitating therapeutic strategies that integrate bone regeneration and anti-inflammatory effects. Despite advances in treatment, no existing agents simultaneously address both objectives. Exosomes (Exos), as key mediators of intercellular communication, have demonstrated dual anti-inflammatory and osteogenic capacities through microRNA (miRNA) delivery; however, their potential in PI therapy remains unexplored.

View Article and Find Full Text PDF

In vivo self-assembled siRNAs ameliorate neurological pathology in TDP-43-associated neurodegenerative disease.

Brain

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege

Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.

View Article and Find Full Text PDF