98%
921
2 minutes
20
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which upper and lower motor neurons degenerate, leading to muscle atrophy, paralysis, and death within 3 to 5 years of onset. While a small percentage of ALS cases are genetically linked, the majority are sporadic with unknown origin. Currently, etiological links are associated with disease onset without mechanistic understanding. Of all the putative risk factors, however, head trauma has emerged as a consistent candidate for initiating the molecular cascades of ALS. Here, we test the hypothesis that traumatic brain injury (TBI) in the SOD1 (G93A) transgenic rat model of ALS leads to early disease onset and shortened lifespan. We demonstrate, however, that a one-time acute focal injury caused by controlled cortical impact does not affect disease onset or survival. Establishing the negligible involvement of a single acute focal brain injury in an ALS rat model increases the current understanding of the disease. Critically, untangling a single focal TBI from multiple mild injuries provides a rationale for scientists and physicians to increase focus on repeat injuries to hopefully pinpoint a contributing cause of ALS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4586929 | PMC |
http://dx.doi.org/10.1523/ENEURO.0059-14.2015 | DOI Listing |
FASEB J
September 2025
Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.
Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.
View Article and Find Full Text PDFNeurochem Res
September 2025
International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
The concept of the central nervous system (CNS) reserve emerged from the mismatch often observed between the extent of brain pathology and its clinical manifestations. The cognitive reserve reflects an "active" capacity, driven by the plasticity of CNS cellular components and shaped by experience, learning, and memory processes that increase resilience. We propose that neuroglial cells are central to defining this resilience and cognitive reserve.
View Article and Find Full Text PDFOper Neurosurg
September 2025
Department of Neurosurgery and the Training Base of Neuroendoscopic Physicians under the Chinese Medical Doctor Association, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
Background And Objectives: Microvascular decompression (MVD) for hemifacial spasm (HFS) is commonly conducted under a microscope. We report a large series of fully endoscopic MVDs for HFS and describe our initial experience with 3-dimensional (3D) endoscopy.
Methods: Clinical data of 204 patients with HFS who underwent fully endoscopic MVD using 2-dimensional (2D) and 3D endoscopy (191 and 13 patients, respectively) from July 2017 to October 2024 were retrospectively analyzed.
Adv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
Regulating the differentiation of implanted stem cells into neurons is crucial for stem cell therapy of traumatic brain injury (TBI). However, due to the migratory nature of implanted stem cells, precise and targeted regulation of their fate remains challenging. Here, neural stem cells (NSCs) are bio-orthogonally engineered with hyaluronic acid methacryloyl (HAMA) microsatellites capable of sustained release of differentiation modulators for targeted regulation of their neuronal differentiation and advanced TBI repair.
View Article and Find Full Text PDF