98%
921
2 minutes
20
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K(+), Na(+) or Li(+)), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787773 | PMC |
http://dx.doi.org/10.1093/nar/gkv1008 | DOI Listing |
J Phys Chem B
September 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland.
G-quadruplexes (G4) are four-stranded nucleic acid structures formed within sequences containing repeated guanine tracts separated by intervening loop regions. Abundant in the human genome, they play crucial roles in transcription regulation and genome maintenance. Although theoretically capable to adopt 26 different folding topologies─primarily differing in loop arrangements─only 14 of these have been observed experimentally.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.
Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.
J Phys Chem Lett
September 2025
Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.
Liquid-liquid phase separation (LLPS) is a newly discovered phenomenon to modulate a multitude of cellular functions. Despite its importance, the full evolution mechanism of LLPS starting from intramolecular interactions to intermolecular condensations has yet to be revealed. In this study, we investigated a representative LLPS formed between negatively charged nucleic acids poly(G-quadruplex) and positively charged peptides poly(lysine).
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Department of Chemistry and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Hong Kong SAR, 000000, China.
TDP-43 is a hallmark protein associated with neurodegenerative diseases. Recent studies revealed TDP-43 as an RNA G-quadruplex (rG4)-binding protein, impacting mRNA transport and function. However, our knowledge of the TDP-43-RNA secondary structure interaction and information on its specific rG4 targets are limited.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Physics and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo 14800-060, Brazil.
Magnesium ions (Mg) play a crucial role in stabilizing various RNA tertiary motifs, such as pseudoknots, G-quadruplexes, kissing loops, and A-minor motifs, to name a few. Despite their importance, the precise location and role of Mg ions in RNA folding are challenging to characterize both experimentally and computationally. In this study, we employ an all-atom structure-based model integrated with the dynamic counterion condensation (DCC) model to investigate the folding and unfolding transitions of apo SAM-II riboswitch RNA at physiological concentrations of Mg.
View Article and Find Full Text PDF