J Phys Chem Lett
September 2025
Liquid-liquid phase separation (LLPS) is a newly discovered phenomenon to modulate a multitude of cellular functions. Despite its importance, the full evolution mechanism of LLPS starting from intramolecular interactions to intermolecular condensations has yet to be revealed. In this study, we investigated a representative LLPS formed between negatively charged nucleic acids poly(G-quadruplex) and positively charged peptides poly(lysine).
View Article and Find Full Text PDFChem Biomed Imaging
April 2025
Since its creation, single-molecule optical imaging has revolutionized the study of catalytic processes, yet its application largely relies on probing fluorogenic reactions. To overcome this limitation, we propose the Fluorogenic Linkage Integration for Nonfluorescent Transformation (FLINT) approach, an imaging method to resolve nonfluorogenic reactions at the single-molecule level. Using glucose oxidation as a model reaction, we coupled this nonfluorogenic reaction with a fluorogenic Amplex Red (AR) → resorufin (RF) transformation to create a cascading reaction.
View Article and Find Full Text PDFSmall molecules that can reduce the neurotoxic beta-amyloid (Aβ) aggregates in the brain provide a potential treatment for Alzheimer disease (AD). Most screening methods for small-molecule hits focus on the overall Aβ aggregations without a specific target, such as the very first association step (i.e.
View Article and Find Full Text PDFSpecificity and activity are often at odds for natural enzymes. In this work, specificity and activity in coronazymes made of an Au nanoparticle (AuNP) and coated with DNA aptamer for glucose substrates are decoupled. By single-molecule fluorescent MT-HILO (magnetic tweezers coupled with highly inclined and laminated optical sheet) microscopy, it is found that this coronazyme has ≈30 times higher activity on the d-glucose compared to bare AuNP nanozymes.
View Article and Find Full Text PDFAlthough chirality is critical for molecular properties and functions, experimental quantification of chirality is lacking. Herein, we performed cyclic voltammetry (CV) under polarized magnetic fields to provide a unified scale to quantify and compare DNA chirality. We observed the largest electron spin polarization in DNA structures with opposite chiral senses, which is consistent with the effect of chiral-induced spin selectivity (CISS).
View Article and Find Full Text PDFCommon in biomacromolecules, kinetically trapped misfolded intermediates are often detrimental to the structures, properties, or functions of proteins or nucleic acids. Nature employs chaperone proteins but not nucleic acids to escort intermediates to correct conformations. Herein, we constructed a Jablonski-like diagram of a mechanochemical cycle in which individual DNA hairpins were mechanically unfolded to high-energy states, misfolded into kinetically trapped states, and catalytically relaxed back to ground-state hairpins by a DNA chaperone.
View Article and Find Full Text PDF8-oxoguanines (8-oxoG) in cells form compromised G-quadruplexes (GQs), which may vary GQ mediated gene regulations. By mimicking molecularly crowded cellular environment using 40% DMSO or sucrose, here it is found that oxidized human telomeric GQs have stabilities close to the wild-type (WT) GQs. Surprisingly, while WT GQs show negative formation cooperativity between a Pt(II) binder and molecularly crowded environment, positive cooperativity is observed for oxidized GQ formation.
View Article and Find Full Text PDFPreventing tau aggregation is a potential therapeutic strategy in Alzheimer's disease and other tauopathies. Recently, liquid-liquid phase separation has been found to facilitate the formation of pathogenic tau conformations and fibrillar aggregates, although many aspects of the conformational transitions of tau during the phase transition process remain unknown. Here, we demonstrate that the tau aggregation inhibitor methylene blue promotes tau liquid-liquid phase separation and accelerates the liquid-to-gel transition of tau droplets independent of the redox activity of methylene blue.
View Article and Find Full Text PDFInteraction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers.
View Article and Find Full Text PDFBiomacromolecules
November 2022
Single-molecule methods offer high sensitivities with precisions superior to bulk assays. However, these methods are low in throughput and cannot repetitively interrogate the same cluster of molecular units. In this work, we investigate a tandem array of G-quadruplexes on a single-molecule DNA template with a throughput of at least two orders of magnitude higher than single-molecule force spectroscopy.
View Article and Find Full Text PDFNoncovalent adsorption of biopolymers on the surface of gold nanoparticles (AuNPs) forms a corona phase that drastically diversify AuNP functions. However, mechanical stabilities of such corona phase are still obscure, hindering the application of biopolymer-coated AuNPs. Here, using optical tweezers, we have observed, for the first time, that DNA corona phase adsorbed on a 5 nm AuNP via two (dA) strands in proximity can withstand an average desorption force of 40 pN, which is higher than the stall force of DNA/RNA polymerases.
View Article and Find Full Text PDFSingle-molecule techniques based on fluorescence and mechanochemical principles provide superior sensitivity in biological sensing. However, due to the lack of high throughput capabilities, the application of these techniques is limited in biophysics. Ensemble force spectroscopy (EFS) has demonstrated high throughput in the investigation of a massive set of molecular structures by converting mechanochemical studies of individual molecules into those of molecular ensembles.
View Article and Find Full Text PDFBinding between a ligand and a receptor is a fundamental step in many natural or synthetic processes. In biosensing, a tight binding with a small dissociation constant (K) between the probe and analyte can lead to superior specificity and sensitivity. Owing to their capability of evaluating competitors, displacement assays have been used to estimate K at the ensemble average level.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
In Tau protein condensates formed by the Liquid-Liquid Phase Separation (LLPS) process, liquid-to-solid transitions lead to the formation of fibrils implicated in Alzheimer's disease. Here, by tracking two contacting Tau-rich droplets using a simple and nonintrusive video microscopy, we found that the halftime of the liquid-to-solid transition in the Tau condensate is affected by the Hofmeister series according to the solvation energy of anions. After dissecting functional groups of physiologically relevant small molecules using a multivariate approach, we found that charged groups facilitate the liquid-to-solid transition in a manner similar to the Hofmeister effect, whereas hydrophobic alkyl chains and aromatic rings inhibit the transition.
View Article and Find Full Text PDFPaper-based analytical devices (PADs) employing colorimetric detection and smartphone images have gained wider acceptance in a variety of measurement applications. PADs are primarily meant to be used in field settings where assay and imaging conditions greatly vary, resulting in less accurate results. Recently, machine-learning (ML)-assisted models have been used in image analysis.
View Article and Find Full Text PDFMechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s shear rate.
View Article and Find Full Text PDFThe COVID-19 pandemic has created huge damage to society and brought panic around the world. Such panic can be ascribed to the seemingly deceptive features of COVID-19: Compared to other deadly viral outbreaks, it has medium transmission and mortality rates. As a result, the severity of the causative coronavirus, SARS-CoV-2, was deeply underestimated by society at the beginning of the COVID-19 outbreak.
View Article and Find Full Text PDFPract Lab Med
August 2020
Background: Paper-analytical devices (PADs) have gained popularity as a simple and low-cost alternative for determining a wide range of analytes including proteins. Even though several colorimetric PADs methods for protein estimation are reported in literature, they lack justification for the chosen method and parameters therein.
Aim: Major aim of this work was to thoroughly evaluate the most commonly used colorimetric protein assays and recommend the most appropriate method for PADs platform.
For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity.
View Article and Find Full Text PDFFood Sci Nutr
November 2018
We evaluated the quality of wines produced in Nepal in terms of phenolic, flavonoid, anthocyanin and tannin content, antioxidant capacity, and color parameters using spectrophotometric methods. The total phenolic content, total flavonoid content, and total antioxidant activities in Nepali wines ranged from 85.5 to 960.
View Article and Find Full Text PDF