Graphene-DNAzyme Junctions: A Platform for Direct Metal Ion Detection with Ultrahigh Sensitivity.

Chem Sci

Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China ; Department of Materials Science and Engineering

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many metal ions are present in biology and in the human body in trace amounts. Despite numerous efforts, metal sensors with ultrahigh sensitivity (< a few picomolar) are rarely achieved. Here, we describe a platform method that integrates a Cu-dependent DNAzyme into graphene-molecule junctions and its application for direct detection of paramagnetic Cu with femtomolar sensitivity and high selectivity. Since DNAzymes specific for other metal ions can be obtained through in vitro selection, the method demonstrated here can be applied to the detection of a broad range of other metal ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583199PMC
http://dx.doi.org/10.1039/C4SC03612CDOI Listing

Publication Analysis

Top Keywords

metal ions
12
ultrahigh sensitivity
8
metal
5
graphene-dnazyme junctions
4
junctions platform
4
platform direct
4
direct metal
4
metal ion
4
ion detection
4
detection ultrahigh
4

Similar Publications

A triphenyl-imidazole end-capped donor-acceptor type potential molecular probe 3 has been designed and synthesized. Probe 3 upon interaction with different classes of metal ions/anions and NPPs displayed high selectivity with CN anion (LOD = 20.42 nM) through fluorescence "turn-Off" response and a naked-eye sensitive visible color change.

View Article and Find Full Text PDF

Lutetium (Lu(III)), a heavy rare earth element, plays a critical role in advanced industrial processes and nuclear medicine applications. Given its high economic value and potential environmental risks, the recovery of Lu(III) from medical wastewater is both necessary and urgent. However, previous studies on the adsorption behavior of Lu(III) have been limited by low adsorption capacity, competition from coexisting metal ions, and the influence of environmental temperature.

View Article and Find Full Text PDF

Galvanizing waste-derived Zn-induced defective Fe-based metal-organic frameworks as superior adsorbent for enhanced antibiotic removal.

Environ Res

September 2025

College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Poll

The derivation of defect-engineered metal-organic frameworks (MOFs) from industrial waste simultaneously mitigates environmental pollution, reduces MOF synthesis costs, and enhances adsorption performance. Herein, this study demonstrates a sustainable strategy for the resourceful synthesis of iron-based MOF s-MIL-100(Fe) using galvanizing pickling waste liquor (80.5 wt.

View Article and Find Full Text PDF

Engineered plasmonic copper (II) sulfide-wrapped polystyrene nanoparticles for spectroscopic detection of mercury ions.

J Hazard Mater

September 2025

Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

We report a novel and highly effective UV-Vis sensing platform based on plasmonic copper (II) sulfide-capsulated polystyrene nanoparticles (PS@CuS NPs) for the rapid, ultrasensitive, and selective detection of Hg . The detection mechanism is driven by a specific anion-exchange reaction between Hg and CuS, resulting in the in-situ transformation of plasmonic CuS into non-plasmonic HgS, which induces a distinct and quantifiable shift in UV-Vis absorption. This structural and optical evolution enables the platform to achieve an exceptionally low detection limit of 20 pM within just 5 min, far below most regulatory thresholds, and a wide linear detection range from 20 pM to 30 nM.

View Article and Find Full Text PDF

The binding interactions between metal ions and dissolved organic matter (DOM) are ubiquitous in freshwater/marine aquatic environments where both coexist. Distinct from free metal ions or DOM, DOM-metal ions (DOM-Me) complexes have emerged as contaminants of emerging concern, primarily due to their altered physicochemical properties, modified migration and transformation patterns, enhanced environmental persistence, and changed ecotoxicity. However, based on the multi-source heterogeneity of DOM and the diversity of metal ions, systematic investigations into the interaction mechanisms and environmental implications of DOM-Me complexes in water environments remain scarce.

View Article and Find Full Text PDF