Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-ß (IFN-β)-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585696PMC
http://dx.doi.org/10.1038/srep14265DOI Listing

Publication Analysis

Top Keywords

cell response
8
glatiramer acetate
8
multiple sclerosis
8
rrms patients
8
brain-reactive cells
8
patients
7
brain antigen-specific
4
cell
4
antigen-specific cell
4
response correlates
4

Similar Publications

Mechanistic roles of long non-coding RNAs in DNA damage response and genome stability.

Mutat Res Rev Mutat Res

September 2025

Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.

View Article and Find Full Text PDF

Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.

View Article and Find Full Text PDF

Purpose: mutations are classically seen in non-small cell lung cancers (NSCLCs), and EGFR-directed inhibitors have changed the therapeutic landscape in patients with -mutated NSCLC. The real-world prevalence of -mutated ovarian cancers has not been previously described. We aim to determine the prevalence of pathogenic or likely pathogenic mutations in ovarian cancer and describe a case of -mutated metastatic ovarian cancer with a durable response to osimertinib, an EGFR-directed targeted therapy.

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF