Small-peptide signals that control root nodule number, development, and symbiosis.

J Exp Bot

Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra ACT 2601, Australia

Published: August 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many legumes have the capacity to enter into a symbiotic association with soil bacteria generically called 'rhizobia' that results in the formation of new lateral organs on roots called nodules within which the rhizobia fix atmospheric nitrogen (N). Up to 200 million tonnes of N per annum is fixed by this association. Therefore, this symbiosis plays an integral role in the N cycle and is exploited in agriculture to support the sustainable fixation of N for cropping and animal production in developing and developed nations. Root nodulation is an expendable developmental process and competency for nodulation is coupled to low-N conditions. Both nodule initiation and development is suppressed under high-N conditions. Although root nodule formation enables sufficient N to be fixed for legumes to grow under N-deficient conditions, the carbon cost is high and nodule number is tightly regulated by local and systemic mechanisms. How legumes co-ordinate nodule formation with the other main organs of nutrient acquisition, lateral roots, is not fully understood. Independent mechanisms appear to regulate lateral roots and nodules under low- and high-N regimes. Recently, several signalling peptides have been implicated in the local and systemic regulation of nodule and lateral root formation. Other peptide classes control the symbiotic interaction of rhizobia with the host. This review focuses on the roles played by signalling peptides during the early stages of root nodule formation, in the control of nodule number, and in the establishment of symbiosis. Here, we highlight the latest findings and the gaps in our understanding of these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erv357DOI Listing

Publication Analysis

Top Keywords

root nodule
12
nodule number
12
nodule formation
12
nodule
8
local systemic
8
lateral roots
8
signalling peptides
8
root
5
formation
5
small-peptide signals
4

Similar Publications

In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.

View Article and Find Full Text PDF

Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.

View Article and Find Full Text PDF

The taxonomic status of two bacterial strains, KW56 and 2063, isolated from root nodules of (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus , yet exhibit significant genotypic and phenotypic differences from all currently described species. Whole-genome comparisons revealed that strain KW56 is most closely related to PETP 02, while strain 2063 is related to strains STM 196 and 29-15.

View Article and Find Full Text PDF

Identification of growth-promoting microorganisms and their impact on chickpea growth in tropical regions.

Braz J Biol

September 2025

Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil.

The study of plant growth-promoting microorganisms is crucial for developing new agricultural strategies aimed at increasing productivity and resilience in semi-arid environments, where water scarcity and soil degradation pose critical challenges. Therefore, this study aimed to identify and relate the effects of inoculation of growth-promoting or nodulating microorganisms in isolates from chickpea roots grown in a semiarid region. The nodules were washed with distilled water, 95% ethanol and 3% NaClO.

View Article and Find Full Text PDF

Objective: To explore the value of microflow patterns based on superb microvascular imaging (SMI) combined with greyscale ultrasound in thyroid nodule diagnosis and biopsy recommendation.

Materials And Methods: Adult patients with thyroid nodules were recruited from May 2023 to February 2024. The greyscale features of nodules were evaluated according to the five ultrasound risk stratification systems (RSSs).

View Article and Find Full Text PDF