98%
921
2 minutes
20
Ferroelectric BaTiO3 became a multifunctional material via doping of lanthanide ions (0.3 mol% Er(3+)/3.0 mol% Yb(3+)) and subsequently upconversion luminescence was enhanced by incorporation of Zn(2+) ions. Upconversion luminescence of BaTiO3:Er(3+)/Yb(3+) perovskite nanophosphor has been studied using 800 and 980 nm laser excitations. The emission dynamics is studied with respect to its dependence on input power and external temperature including lifetime. Based on time-resolved spectroscopy, it is inferred that two types of Er(3+) sites are present in the barium titanate lattice. The first one is a short lived component (minor species) present at 6-coordinated Ti-sites of low symmetry while the second one is a long lived component (major species), present at 12-coordinated Ba-sites with high symmetry. The influence of the introduction of Zn(2+) ions on the lifetime of (4)S3/2 and (4)F9/2 levels of Er(3+) ions is also investigated. Enhanced temperature sensing performance (120 K to 505 K) of the material is observed using the fluorescence intensity ratio technique, employing the emission from the thermally coupled, (2)H11/2 and (4)S3/2 energy levels of Er(3+) ions. The defect luminescence of the material is also found to increase upon Zn-doping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp01874a | DOI Listing |
Regen Biomater
August 2025
College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao 266071, China.
Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.
View Article and Find Full Text PDFJ Org Chem
September 2025
Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
The denitrogenation of tetrazoles is typically performed using transition-metal catalysts at high temperatures due to the inherent stability of the tetrazole group. In this work, we present, for the first time, an electrochemical method for denitrogenating tetrazoles at room temperature. This method employs a sacrificial zinc anode and a platinum cathode in a solvent mixture of acetonitrile and water under a constant current in an undivided cell.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:
Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.
Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.
Colloids Surf B Biointerfaces
August 2025
Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China. Electronic address:
Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.
View Article and Find Full Text PDF