98%
921
2 minutes
20
Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee's sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee's channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894402 | PMC |
http://dx.doi.org/10.1038/srep12475 | DOI Listing |
Front Public Health
September 2025
College of Medicine and Health Sciences, Arbaminch University, Arbaminch, Ethiopia.
Background: Long-lasting insecticidal nets (LLINs) are the main vector control tools and remain protective against malaria, even in the presence of high pyrethroid resistance. However, in sub-Saharan Africa, the estimated percentage of the population sleeping under LLINs is low. Hence, this qualitative study was conducted to explore perceptions about LLINs and the reasons for low LLIN use in southern Ethiopia.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural
The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
The pine-forest guardian Dastarcus helophoroides mainly rely on olfaction to locate its host accurately and interact socially. Odorant binding proteins of D. helophoroides play an important role in olfactory recognition and transporting odors to olfactory receptors to trigger signal transduction.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, 11
G protein-coupled receptors (GPCRs) constitute a diverse and crucial family of membrane receptors, regulating a wide array of physiological processes. Although the involvement of GPCR signaling pathways in modulating key genes associated with insecticide resistance has been documented in various insect species, the molecular mechanisms underlying GPCR-mediated resistance in Cydia pomonella remain largely unknown. To elucidate the molecular basis of lambda-cyhalothrin (LCT) resistance in C.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France. Electronic address:
Spodoptera frugiperda is a major crop pest that invaded Thailand in 2018 which cause significant damage, particularly to maize. In recent years, a loss of efficacy of certain insecticides has been observed, suggesting the emergence of resistance. The aim of our study was to investigate the molecular mechanisms of resistance in S.
View Article and Find Full Text PDF