98%
921
2 minutes
20
The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2015.1074113 | DOI Listing |
Front Endocrinol (Lausanne)
September 2025
Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.
Endometrial cancer (EC) is one of the most common gynecological cancers in developed countries. Like EC, most female reproductive tract malignancies are thought to be hormonally driven, with estrogen signaling acting as an oncogenic signal. The actions of estrogen are mediated through the classical nuclear estrogen receptors α (ER-α) and β (ER-β) as well as transmembrane G protein-coupled estrogen receptors (GPR30 and GPER).
View Article and Find Full Text PDFNewton
September 2025
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Molecular and Cellular Biology, University of California, 1 Shields Avenue, Davis, CA 95616, USA. Electronic address:
Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.
View Article and Find Full Text PDFEnviron Res
September 2025
College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan,P.R.China; Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, P.R.China.
Naturally occurring radioactive materials (NORM) are present in waste generated during shale gas drilling activities and pose potential risks to the environment, drawing increasing public and scientific attention. In this study, soil, wastewater and effluent samples were collected across multiple operational stages of shale gas development in Southwest China. A combination of in-situ gamma absorbed dose rate in air, soil radon concentration, radionuclide activity concentrations, and conventional hazard indices was used to evaluate environmental radioactivity and potential occupational exposure.
View Article and Find Full Text PDFCancer Res
September 2025
The Catholic University of Korea College of Medicine, Seoul, Korea (South), Republic of.
Alterations in the structure of the Golgi apparatus play a pivotal role in cancer progression and invasion. A better understanding of how Golgi morphology regulates the metastatic potential of cancer cells could help identify potential treatment strategies. In this study, we investigated how specific structural variations in the Golgi, particularly fragmentation and condensation, influence the malignancy of gastric cancer using human cell lines, xenograft mouse models, and human patient tissue samples.
View Article and Find Full Text PDF