Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper.

Methods: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively.

Results: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016.

Discussion: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508808PMC
http://dx.doi.org/10.1186/s12936-015-0782-4DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
24
vector control
16
design study
8
impact insecticide
8
resistance
8
malaria vector
8
malaria disease
8
resistance protective
8
protective effectiveness
8
sudan kenya
8

Similar Publications

Background: Long-lasting insecticidal nets (LLINs) are the main vector control tools and remain protective against malaria, even in the presence of high pyrethroid resistance. However, in sub-Saharan Africa, the estimated percentage of the population sleeping under LLINs is low. Hence, this qualitative study was conducted to explore perceptions about LLINs and the reasons for low LLIN use in southern Ethiopia.

View Article and Find Full Text PDF

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF

Molecular characterization of Spodoptera frugiperda nose resistant to fluoxetine protein 6 and its putative involvement in tolerance to cyantraniliprole.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

Spodoptera frugiperda (FAW) is a notorious polyphagous pest that has developed resistance to various insecticides including diamide insecticides. Our previous study established a FAW cyantraniliprole-resistant (SfCYAN-R) strain by laboratory resistance selection of susceptible strain (SfCYAN-S), however, the potential resistance mechanisms of FAW to cyantraniliprole remain unclear. In this study, SfNrf6 encoding nose resistant to fluoxetine (Nrf) protein 6 was identified to be upregulated in SfCYAN-R strain compared with SfCYAN-S strain based on RNA-Seq data and RT-qPCR.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF